Towards molecular movies: exploring reaction dynamics using electron diffraction
迈向分子电影:利用电子衍射探索反应动力学
基本信息
- 批准号:EP/I004122/2
- 负责人:
- 金额:$ 39.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
So much of our knowledge and understanding of the world around us comes from a consideration of the structures of molecules. But how do scientists know what is happening at a molecular or atomic level? Diffraction techniques can give us directly information such as the geometry that a molecule adopts, whether that geometry changes depending on the physical state of the substance, and what products are yielded when two or more molecules react. In the 20th century no fewer than 22 Nobel Prizes were awarded for work based around structural studies using X-ray and electron diffraction, leading to such important discoveries as the double-helix structure of DNA and the role of haemoglobin in the life cycle. In the 21st century the new goal is to understand the dynamics of chemical reactions. This requires us not just to observe structures before and after reactions have occurred, but also to gain a deeper knowledge of how and why reactions proceed in particular ways and, ultimately, to use this information to control reactions.The use of pump-probe experiments to study ultrafast events in chemistry, biology and materials science has already begun to revolutionise our understanding of chemical reactions. Such experiments use an intense laser beam to provide energy to molecules (the pumping), changing their fundamental structures, which are then observed (probed). Until now the emphasis has been on using lasers for both the pump and probe phases or, more recently, using X-ray diffraction to probe the structures. Diffraction methods yield transient structures of molecules directly, which is greatly preferable to inferring structural information from spectroscopy.My research takes this one step further and uses electron diffraction as a probe to study the structures of chemical species undergoing changes that occur on a variety of timescales. Electrons are particularly well suited to studying structures in the gas phase, where the lack of influence from neighbouring molecules (an issue with solid-state techniques) allows model systems to be studied. Electrons are efficient probes of molecular structure, with a high scattering cross section and a low proportion of inelastic scattering (which contains little or no structural information). Because electrons are charged they repel one another. This has consequences when very short pulses of electrons are required, and the theoretical limit of temporal resolution in a laboratory is 0.5 picoseconds. Experiments have been performed elsewhere and reported as femtosecond electron diffraction - this is misleading as the technology dictates that the picosecond limit remains. However, it is possible to break through this barrier using electrons with very high energies. Such electrons are routinely used in accelerator physics, where they are sped up until X-rays are emitted. I will ultimately harness these electrons to give pulses with a length of around 100 femtoseconds; when used in a diffraction experiment these electrons will allow the formation and breaking of chemical bonds to be observed.One area where I will use ultrafast electron-diffraction methods is in the study of hydrogen bonds, which are of utmost importance in chemistry and biology and are common in many molecular species such as water, DNA and proteins. Despite many years of work into the mechanisms of the formation and breaking of hydrogen bonds there are still many unanswered questions. A process related to hydrogen bonding, called fast proton transport, is believed to occur in many biological systems where energy is converted from one form to another. It has been proposed that, in systems with more than one hydrogen bond, fast proton transport follows set patterns. I will also work closely with synthetic chemists to ensure that I am studying the systems that really matter to chemists today, setting my work apart from others who are currently practicising ultrafast electron diffraction.
我们对周围世界的许多知识和理解都来自于对分子结构的考虑。但科学家如何知道在分子或原子水平上正在发生的事情呢?衍射技术可以直接给我们提供信息,如分子采用的几何结构,该几何结构是否随物质的物理状态而变化,以及当两个或更多分子反应时产生什么产物。在20世纪,至少有22项诺贝尔奖获奖,这些奖项是基于使用X射线和电子衍射进行的结构研究,导致了DNA的双螺旋结构和血红蛋白在生命周期中的作用等重要发现。在21世纪,新的目标是了解化学反应的动力学。这不仅要求我们观察反应发生前后的结构,还要求我们更深入地了解反应是如何以及为什么以特定的方式进行的,并最终利用这些信息来控制反应。利用泵浦-探测实验来研究化学、生物和材料科学中的超快事件已经开始彻底改变我们对化学反应的理解。这类实验使用强激光为分子提供能量(泵浦),改变其基本结构,然后进行观察(探测)。到目前为止,重点一直是在泵浦和探测阶段使用激光,或者最近使用X射线衍射来探测结构。衍射法直接产生分子的瞬时结构,这比从光谱学中推断结构信息要好得多。我的研究更进一步,使用电子衍射作为探针来研究在不同时间尺度上发生变化的化学物种的结构。电子特别适合于研究气相中的结构,在气相中,由于缺乏邻近分子的影响(固态技术的一个问题),可以研究模型系统。电子是有效的分子结构探测器,具有高散射截面和低比例的非弹性散射(几乎不包含结构信息)。因为电子是带电的,所以它们相互排斥。当需要非常短的电子脉冲时,这会产生后果,而实验室中时间分辨率的理论极限是0.5皮秒。其他地方已经进行了实验,并被报道为飞秒电子衍射--这是一种误导,因为技术规定皮秒限制仍然存在。然而,使用能量非常高的电子有可能突破这一障碍。这样的电子通常用于加速器物理,在那里它们被加速,直到发出X射线。我最终将利用这些电子发出长度约为100飞秒的脉冲;当用于衍射实验时,这些电子将允许观察到化学键的形成和断裂。我将使用超快电子衍射方法的一个领域是研究氢键,这在化学和生物学中非常重要,在许多分子物种中很常见,如水、DNA和蛋白质。尽管多年来对氢键的形成和断裂的机制进行了研究,但仍然有许多问题没有得到解答。与氢键相关的过程被称为快速质子传输,被认为发生在许多生物系统中,在这些系统中,能量从一种形式转换为另一种形式。有人提出,在有一个以上氢键的系统中,快速的质子传输遵循固定的模式。我还将与合成化学家密切合作,以确保我正在研究对当今化学家真正重要的系统,使我的工作有别于其他目前正在实践超快电子衍射的人。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boron - The Fifth Element
硼 - 第五元素
- DOI:10.1007/978-3-319-22282-0_2
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Hnyk D
- 通讯作者:Hnyk D
The structure of tris(chloromethyl)amine in the gas phase using quantum chemical calculations and gas electron diffraction and as a solid and melt using Raman spectroscopy
使用量子化学计算和气体电子衍射分析气相中的三(氯甲基)胺的结构,并使用拉曼光谱分析固体和熔体的结构
- DOI:10.1007/s11224-018-1089-1
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Rankine C
- 通讯作者:Rankine C
A computational analysis of the apparent nido vs. hypho conflict: are we dealing with six- or eight-vertex open-face diheteroboranes?
对明显的 nido 与 hypho 冲突的计算分析:我们正在处理六顶点还是八顶点的开放面二杂硼烷?
- DOI:10.1039/c5dt01460c
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Nunes JP
- 通讯作者:Nunes JP
Desorption kinetics from a surface derived from direct imaging of the adsorbate layer.
来自吸附层直接成像的表面解吸动力学。
- DOI:10.1038/ncomms4853
- 发表时间:2014
- 期刊:
- 影响因子:16.6
- 作者:Günther S
- 通讯作者:Günther S
Structure of 4-(Dimethylamino)benzonitrile Using Gas Electron Diffraction: A New Lease of Life for the Only Gas Electron Diffractometer in the U.K. .
使用气体电子衍射分析 4-(二甲氨基)苯甲腈的结构:英国唯一的气体电子衍射仪的新生命。
- DOI:10.1021/acs.jpca.8b03613
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Rankine CD
- 通讯作者:Rankine CD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek Wann其他文献
Derek Wann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek Wann', 18)}}的其他基金
Towards molecular movies: exploring reaction dynamics using electron diffraction
迈向分子电影:利用电子衍射探索反应动力学
- 批准号:
EP/I004122/1 - 财政年份:2010
- 资助金额:
$ 39.58万 - 项目类别:
Fellowship
相似国自然基金
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
- 批准号:82304565
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
- 批准号:31900545
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Solar energy materials in action: real-time molecular movies of pyroelectric switching by time-resolved X-ray diffraction
太阳能材料的实际应用:通过时间分辨 X 射线衍射拍摄热释电开关的实时分子电影
- 批准号:
2901373 - 财政年份:2024
- 资助金额:
$ 39.58万 - 项目类别:
Studentship
Bacterial chemotaxis signaling: Towards molecular movies
细菌趋化信号:迈向分子电影
- 批准号:
EP/Y027922/1 - 财政年份:2023
- 资助金额:
$ 39.58万 - 项目类别:
Fellowship
Molecular movies using time-resolved momentum spectroscopies
使用时间分辨动量光谱的分子电影
- 批准号:
FT210100264 - 财政年份:2022
- 资助金额:
$ 39.58万 - 项目类别:
ARC Future Fellowships
MRI: Acquisition of High-Power 100 kHz Laser for Recording Real-Time Movies of Ultrafast Molecular Reactions
MRI:采集高功率 100 kHz 激光来记录超快分子反应的实时电影
- 批准号:
2019150 - 财政年份:2020
- 资助金额:
$ 39.58万 - 项目类别:
Standard Grant
Nanophotonic Strategies for Making Molecular Movies of Catalysis
制作催化分子电影的纳米光子策略
- 批准号:
1856518 - 财政年份:2019
- 资助金额:
$ 39.58万 - 项目类别:
Continuing Grant
Fs electron diffraction: making molecular movies
Fs 电子衍射:制作分子电影
- 批准号:
396779-2010 - 财政年份:2010
- 资助金额:
$ 39.58万 - 项目类别:
University Undergraduate Student Research Awards
Towards molecular movies: exploring reaction dynamics using electron diffraction
迈向分子电影:利用电子衍射探索反应动力学
- 批准号:
EP/I004122/1 - 财政年份:2010
- 资助金额:
$ 39.58万 - 项目类别:
Fellowship
Making molecular movies
制作分子电影
- 批准号:
382319-2009 - 财政年份:2009
- 资助金额:
$ 39.58万 - 项目类别:
University Undergraduate Student Research Awards
Making molecular movies of reactions in solutions
制作溶液中反应的分子电影
- 批准号:
332579-2007 - 财政年份:2009
- 资助金额:
$ 39.58万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Making molecular movies of reactions in solutions
制作溶液中反应的分子电影
- 批准号:
332579-2007 - 财政年份:2008
- 资助金额:
$ 39.58万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




