Energy Harvesting Materials for Smart Fabrics and Interactive Textiles

用于智能织物和互动纺织品的能量收集材料

基本信息

  • 批准号:
    EP/I005323/1
  • 负责人:
  • 金额:
    $ 147.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Smart fabrics and interactive textiles (SFIT) are defined as textiles that are able to sense stimuli from the environment and react or adapt to them in a predetermined way. For example, smart textiles/garments can incorporate sensors/actuators, processing and communications for use in applications such as health monitoring, consumer products and in the automotive sector. Smart fabrics and interactive textiles represent the next generation of fabrics and the potential opportunities for exploiting them are enormous. During recent involvement with the textiles community and talking in particular to developers of smart fabrics and intelligent clothing, it has become clear that a major obstacle towards integrating electronic functionality into fabrics is the portable power supply required. For example, whilst conductive tracks can be printed onto, or conductive yarns woven into, a fabric, the power supply for any integrated device is presently a standard battery. This requires conventional connection and must be repeatedly replaced and removed during washing. No matter how integrated the functionality of the fabric becomes, at present there is no alternative to powering the system using discrete batteries. Energy harvesting (also known as energy scavenging) is concerned with the conversion of ambient energy present in the environment into electricity. Energy Harvesting is now a significant research topic with conferences such as PowerMEMS, IEEE MEMS, Transducers, DTIP and Eurosensors featuring at least one session on the subject. Energy harvesters do not have the energy density (energy stored for a given volume) of a battery but offer the attraction of an integrated power supply that will last the lifetime of the application and will not require recharging or replacement. This project will focus on harvesting energy from two sources: kinetic and thermal energy all of which have been identified as promising approaches for powering mobile electronics. - Kinetic Energy Harvesting - For example, there is a large amount of kinetic energy available from human motion. Human motion characterised by large amplitude, low frequency movements that can also exert large forces. It has been estimated that 67W of energy are available in each step . - Thermal Energy Harvesting - Harvesting of energy from heat sources (such as the human body) can be achieved by the conversion of thermal gradients to electrical energy using the Seebeck effect. There has been interest in the generation of power from body heat as a means to power wearable devices. For example Seiko have produced a wrist watch powered by body heat. Reported results for power densities achieved from micro-fabricated devices are 0.14 microW/mm^2 from a 700 mm^2 device for a temperature difference of 5 K, which is typically achievable for wearable applications. The proposal involves using rapid printing processes and active printed inks to achieve energy harvesting fabrics. This will result in a low cost, easy to design, flexible and rapid way to realise energy harvesting textiles/garments. Both inkjet and screen printed are fully accepted processes widely used in the textile industry for depositing patterns. The proposed screen and inkjet printing processes have many benefits including low-cost, repeatability, flexibility, suitability for small/medium series and mass production, short development time, compatibility with a wide range of textiles and the capability of depositing a wide range of materials. The inks and associated printing parameters will be researched to enable the bespoke design and layout of the energy harvesting films in the application being addressed. The research will provide a toolbox of materials and processes suitable for a range of different fabrics that enable a user to develop the energy harvesting fabric best suited to their requirements.
智能织物和交互式纺织品(SFIT)被定义为能够感知来自环境的刺激并以预定方式对其做出反应或适应的纺织品。例如,智能纺织品/服装可以结合传感器/致动器、处理和通信,用于健康监测、消费品和汽车行业等应用。智能织物和互动纺织品代表了下一代织物,开发它们的潜在机会是巨大的。在最近与纺织界的接触中,特别是与智能织物和智能服装的开发人员的交谈中,很明显,将电子功能集成到织物中的主要障碍是所需的便携式电源。例如,虽然导电轨道可以被印刷到织物上,或者导电纱线可以被编织到织物中,但是用于任何集成设备的电源目前是标准电池。这需要常规的连接,并且必须在洗涤期间反复更换和移除。无论织物的功能如何集成,目前都没有替代方案可以使用分立电池为系统供电。能量收集(也称为能量收集)涉及将环境中存在的环境能量转换为电力。能量收集现在是一个重要的研究课题,PowerMEMS,IEEE MEMS,Transducers,DTIP和Eurosensors等会议至少有一个关于该主题的会议。能量采集器不具有电池的能量密度(为给定体积存储的能量),但提供集成电源的吸引力,该电源将持续应用的寿命,并且不需要充电或更换。该项目将侧重于从两个来源收集能量:动能和热能,所有这些都被认为是为移动的电子产品供电的有前途的方法。- 动能收集-例如,有大量的动能可从人体运动。人体运动的特点是大幅度,低频率的运动,也可以施加很大的力量。据估计,每一步可获得67 W的能量。- 热能收集-从热源(如人体)收集能量可以通过使用塞贝克效应将热梯度转换为电能来实现。已经对从体热产生电力作为对可穿戴设备供电的手段感兴趣。例如,精工制造了一种由体温驱动的手表。报道的结果表明,在温差为5 K时,微加工器件的功率密度为0.14 microW/mm^2,而700 mm^2器件的功率密度为0.14 microW/mm^2,这对于可穿戴应用来说通常是可以实现的。该提案涉及使用快速印刷工艺和活性印刷油墨来实现能量收集织物。这将导致低成本、易于设计、灵活和快速的方式来实现能量收集纺织品/服装。喷墨和丝网印刷都是纺织工业中广泛使用的用于沉积图案的完全接受的工艺。所提出的丝网印刷和喷墨印刷工艺具有许多优点,包括低成本、可重复性、灵活性、适用于小/中型系列和大规模生产、开发时间短、与各种纺织品的兼容性以及沉积各种材料的能力。将研究油墨和相关的印刷参数,以实现能量收集薄膜在所解决的应用中的定制设计和布局。该研究将提供一个适用于各种不同织物的材料和工艺工具箱,使用户能够开发出最适合其要求的能量收集织物。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spray Coated Textile Solar Cells
喷涂纺织太阳能电池
  • DOI:
    10.1109/fleps.2019.8792318
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arumugam S
  • 通讯作者:
    Arumugam S
Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles
  • DOI:
    10.1016/j.nanoen.2017.01.037
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Almusallam, Ahmed;Luo, Zhenhua;Beeby, Steve
  • 通讯作者:
    Beeby, Steve
Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing
使用冷等静压改善丝网印刷低温 PZT/聚合物复合材料的介电和压电性能
  • DOI:
    10.1088/1742-6596/557/1/012083
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Almusallam A
  • 通讯作者:
    Almusallam A
Solution Processed Organic Solar Cells on Textiles
  • DOI:
    10.1109/jphotov.2018.2871334
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Sasikumar Arumugam;Yi Li;M. Glanc-Gostkiewicz;R. Torah;S. Beeby
  • 通讯作者:
    Sasikumar Arumugam;Yi Li;M. Glanc-Gostkiewicz;R. Torah;S. Beeby
Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications
  • DOI:
    10.1039/c5ta03389f
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Arumugam, S.;Li, Y.;Beeby, S. P.
  • 通讯作者:
    Beeby, S. P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Beeby其他文献

The Fabrication of the Electrospun Polyvinylidene Fluoride (PVDF) Hollow Structure Fibre for Energy Harvesting Applications
用于能量收集应用的静电纺聚偏氟乙烯 (PVDF) 中空结构纤维的制造

Stephen Beeby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Beeby', 18)}}的其他基金

Functional electronic textiles for light emitting and colour changing applications
用于发光和变色应用的功能性电子纺织品
  • 批准号:
    EP/S005307/1
  • 财政年份:
    2019
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant
E-textiles Network
电子纺织网
  • 批准号:
    EP/R031738/1
  • 财政年份:
    2018
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant
Wearable and Autonomous Computing for Future Smart Cities: A Platform Grant
未来智慧城市的可穿戴和自主计算:平台资助
  • 批准号:
    EP/P010164/1
  • 财政年份:
    2017
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant
Novel manufacturing methods for functional electronic textiles
功能性电子纺织品的新型制造方法
  • 批准号:
    EP/M015149/1
  • 财政年份:
    2015
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant
Energy Harvesting Network Proposal
能量收集网络提案
  • 批准号:
    EP/H013458/1
  • 财政年份:
    2010
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant
Otoacoustic Emission Based Biometric Systems
基于耳声发射的生物识别系统
  • 批准号:
    EP/E015522/1
  • 财政年份:
    2007
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Research Grant

相似海外基金

NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Standard Grant
High Performance Iron Germanide-Based Materials for Energy Harvesting Applications
用于能量收集应用的高性能锗化铁基材料
  • 批准号:
    22KF0390
  • 财政年份:
    2023
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of new advanced materials and structures for development of energy harvesting devices
研究用于开发能量收集装置的新型先进材料和结构
  • 批准号:
    2891963
  • 财政年份:
    2023
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Studentship
ERI: Theory and Simulation of Photoexcitation Dynamics in 2-Dimensional Materials for Solar Energy Harvesting
ERI:用于太阳能收集的二维材料光激发动力学的理论与模拟
  • 批准号:
    2138728
  • 财政年份:
    2022
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Design and development of flexible piezoelectric/magnetostrictive composite materials and development of energy harvesting IoT systems
柔性压电/磁致伸缩复合材料的设计与开发以及能量收集物联网系统的开发
  • 批准号:
    21J10839
  • 财政年份:
    2021
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nanoscale materials for energy harvesting
用于能量收集的纳米材料
  • 批准号:
    2482362
  • 财政年份:
    2020
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Studentship
Bio-inspired Photosynthetic Materials for Solar Energy Harvesting
用于太阳能收集的仿生光合材料
  • 批准号:
    2278941
  • 财政年份:
    2019
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Studentship
Demonstration of piezoelectric properties of novel 2D materials toward energy harvesting
展示新型二维材料在能量收集方面的压电特性
  • 批准号:
    19K21956
  • 财政年份:
    2019
  • 资助金额:
    $ 147.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了