Dual Process Control Models in the Brain and Machines with Application to Autonomous Vehicle Control
大脑和机器中的双过程控制模型在自主车辆控制中的应用
基本信息
- 批准号:EP/I009310/1
- 负责人:
- 金额:$ 44.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of autonomous vehicle control (AVC) is a rapidly growing one which promises improved performance, fuel economy, emission levels, comfort and safety.Application of conventional control methods can generate adequate results under restricted circumstances,but have high design and computational costs and are fragile under real environmental changes (winds, proximity of other vehicles etc).There is therefore a pressing need for alternative approaches to AVC.One particularly promising alternative is to break the task into a set of sub-tasks,each valid over a restricted range of conditions, and to switch between them when required.Dr Hussain's group in Stirling has been developing a novel framework for such'modular learning controllers'over the last few years.The problem of selecting from amongst a set of actions or behaviours is also a central problem for animals.There is growing evidence that a set of central brain nuclei -the basal ganglia- are used by all vertebrates to help solve this problem.Research in Prof Gurney's lab has,over the last decade,been developing computational models of how the basal ganglia support behavioural selection.Thus,we believe that the basal ganglia act as a central 'selector' or 'switch' in all vertebrate brains,in that they examine requests for behaviour and allow the most urgent or salient requests to be selected for behavioural expression Given the similarity between the two problems' domains of AVC and action selection in animals, this project aims to leverage new results from psychology and neurobiology (discovered in Prof Gurney's lab) and apply them to the AVC controllers under development in Dr Hussain's group.One aspect of action selection which appears particularly promising in this respect has to do with there being two general modes of behavioural selection.To see this,consider the following scenarios.First,imagine making tea soon after getting out of bed in the morning in your own kitchen.You probably know exactly what to do without having to consciously be aware of it--the location of the tea,milk,sugar,kettle and water-tap are all well learned, as is the motor actions required to interact with the objects in these locations.Introspection after the event leads us to use terms such as;`I did it in my sleep' or `I was on auto-pilot'.Now consider doing the same task if you are staying at a friend's house for the first time.A completely different strategy appears to be used.Thus,we have to be alert, explore, and use high level cognitive knowledge that we hope generalises well (for example,we hope the tea will be in a cupboard near the sink, not in the living room)These two modes of control are well recognised in the psychological literature as automatic and controlled or executive processing respectively.There is also growing neurobiological evidence for the existence of different control regimes, supported by different brain systems.In addition, the new AVC systems developed at Stirling have two major components:a high level 'supervisory' controller and a set of basic (but adaptable) controllers that direct the actual vehicle behaviour.We believe the similarities with the biological notions of executive and automatic control are highly indicative of a mutually fruitful interaction between neuroscientific and control theoretic domains in this regard.Thus, while our general aim is to exploit a range of similarities between systems in control engineering and the animal brain, we will focus specifically on the concepts of automatised and controlled (or executive) processing and how they might map onto modular AVC solutions of the kind described above.The outcome should be a new generation real-time AVC controller, more directly inspired by the biological ideas. We will work with our industrial partners (Industrial Systems Control and SciSys) to evaluate the benefits of these novel controllers within the context of regular road driving and planetary rover vehicles.
自动车辆控制(AVC)是一个快速发展的领域,它承诺改善性能、燃油经济性、排放水平、舒适性和安全性。传统控制方法的应用在有限的条件下可以产生足够的结果,但具有较高的设计和计算成本,并且在真实环境变化(风、其他车辆的接近等)下很脆弱。因此,迫切需要替代的方法来实现自动车辆控制。一个特别有希望的替代方案是将任务分解为一组子任务,每个子任务在有限的条件范围内有效,在过去的几年里,侯赛因博士在斯特林的研究小组一直在开发一种新的框架,用于这种“模块化学习控制器”。从一组动作或行为中进行选择的问题也是动物的一个中心问题。越来越多的证据表明,所有脊椎动物都使用一组中央大脑核团--基底节--来帮助解决这一问题。在过去的十年里,格尼教授实验室的研究一直在开发计算模型,说明基底节是如何支持行为选择的。因此,我们认为,基底节在所有脊椎动物的大脑中扮演着中央‘选择器’或‘开关’的角色。考虑到两个问题的AVC领域和动物的动作选择之间的相似性,该项目旨在利用心理学和神经生物学的新结果(在Gurney教授的实验室中发现),并将它们应用于Hussain博士团队正在开发的AVC控制器。动作选择的一个方面在这方面似乎特别有希望。为了理解这一点,请考虑以下场景。想象一下,早上起床后不久,在你自己的厨房里泡茶。你可能不需要有意识地知道该做什么--茶、牛奶、糖、水壶和水龙头的位置都很好地掌握了,以及与这些位置上的物体互动所需的运动动作。事后的反思让我们使用了这样的术语:“我是在睡梦中做的”或“我是在自动驾驶状态下做的”。如果你是第一次住在朋友家,现在考虑做同样的任务。这似乎是一种完全不同的策略。因此,我们必须保持警惕,探索并使用我们希望能很好地概括的高级认知知识(例如,我们希望茶会放在水槽附近的橱柜里,而不是在客厅里)。这两种控制模式在心理学文献中分别被认为是自动的、受控的或执行过程。还有越来越多的神经生物学证据表明存在不同的控制机制。由不同的大脑系统支持。此外,在斯特林开发的新AVC系统有两个主要组件:一个高级的‘监控’控制器和一组指导实际车辆行为的基本(但可适应的)控制器。我们相信,与执行和自动控制的生物学概念的相似性高度表明在这方面神经科学和控制理论领域之间的相互富有成效的互动。因此,尽管我们的总体目标是利用控制工程系统和动物大脑之间的一系列相似之处,我们将特别关注自动化和受控(或执行)处理的概念,以及它们如何映射到上述类型的模块化AVC解决方案。结果应该是新一代实时AVC控制器,更直接地受到生物学思想的启发。我们将与我们的工业合作伙伴(工业系统控制和Science Sys)合作,在常规道路驾驶和行星漫游车的背景下评估这些新型控制器的好处。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biologically Inspired Progressive Enhancement Target Detection from Heavy Cluttered SAR Images
- DOI:10.1007/s12559-016-9405-9
- 发表时间:2016-04
- 期刊:
- 影响因子:5.4
- 作者:F. Gao;Fei Ma;Yaotian Zhang;J. Wang;Jinping Sun;Erfu Yang;A. Hussain
- 通讯作者:F. Gao;Fei Ma;Yaotian Zhang;J. Wang;Jinping Sun;Erfu Yang;A. Hussain
Visual Attention Model Based Vehicle Target Detection in Synthetic Aperture Radar Images: A Novel Approach
合成孔径雷达图像中基于视觉注意模型的车辆目标检测:一种新方法
- DOI:10.1007/s12559-014-9312-x
- 发表时间:2014-12
- 期刊:
- 影响因子:5.4
- 作者:Wang, Jun;Sun, Jinping;Yang, Erfu;Hussain, Amir
- 通讯作者:Hussain, Amir
A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network
基于改进深度卷积神经网络的SAR图像目标识别新算法
- DOI:10.1007/s12559-018-9563-z
- 发表时间:2019-12-01
- 期刊:
- 影响因子:5.4
- 作者:Gao, Fei;Huang, Teng;Yang, Erfu
- 通讯作者:Yang, Erfu
Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.).
- DOI:10.1371/journal.pone.0159934
- 发表时间:2016
- 期刊:
- 影响因子:3.7
- 作者:Betancor MB;Sprague M;Sayanova O;Usher S;Metochis C;Campbell PJ;Napier JA;Tocher DR
- 通讯作者:Tocher DR
A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine.
一种基于增量半监督支持向量机的新型分类算法
- DOI:10.1371/journal.pone.0135709
- 发表时间:2015
- 期刊:
- 影响因子:3.7
- 作者:Gao F;Mei J;Sun J;Wang J;Yang E;Hussain A
- 通讯作者:Hussain A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Hussain其他文献
Novel deep neural network based pattern field classification architectures
基于新型深度神经网络的模式场分类架构
- DOI:
10.1016/j.neunet.2020.03.011 - 发表时间:
2020-03 - 期刊:
- 影响因子:7.8
- 作者:
Kaizhu Huang;Shufei Zhang;Rui Zhang;Amir Hussain - 通讯作者:
Amir Hussain
Automatic object-oriented coding facility for product life cycle management of discrete products
用于离散产品的产品生命周期管理的自动面向对象编码工具
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
W. Khan;Amir Hussain - 通讯作者:
Amir Hussain
Deep Complex U-Net with Conformer for Audio-Visual Speech Enhancement
具有 Conformer 的深度复杂 U-Net,用于增强视听语音
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shafique Ahmed;Chia;Wenze Ren;Chin;Ernie Chu;Jun;Amir Hussain;H. Wang;Yu Tsao;Jen - 通讯作者:
Jen
AVSE Challenge: Audio-Visual Speech Enhancement Challenge
AVSE 挑战赛:视听语音增强挑战赛
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrea Lorena Aldana Blanco;Cassia Valentini;Ondrej Klejch;M. Gogate;K. Dashtipour;Amir Hussain;P. Bell - 通讯作者:
P. Bell
Artificial intelligence-enabled analysis of UK and US public attitudes on Facebook and Twitter towards COVID-19 vaccinations
利用人工智能分析 Facebook 和 Twitter 上英国和美国公众对 COVID-19 疫苗接种的态度
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amir Hussain;Ahsen Tahir;Zain U. Hussain;Zakariya Sheikh;M. Gogate;K. Dashtipour;Azhar Ali;Aziz Sheikh - 通讯作者:
Aziz Sheikh
Amir Hussain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Hussain', 18)}}的其他基金
COG-MHEAR: Towards cognitively-inspired 5G-IoT enabled, multi-modal Hearing Aids
COG-MHEAR:迈向受认知启发的 5G-IoT 支持的多模式助听器
- 批准号:
EP/T021063/1 - 财政年份:2021
- 资助金额:
$ 44.93万 - 项目类别:
Research Grant
Towards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devices (AV-COGHEAR)
面向认知启发的多模式助听设备的视觉驱动语音增强 (AV-COGHEAR)
- 批准号:
EP/M026981/1 - 财政年份:2015
- 资助金额:
$ 44.93万 - 项目类别:
Research Grant
Industrial CASE Account - Stirling 2009
工业案例账户 - 斯特灵 2009
- 批准号:
EP/H501584/1 - 财政年份:2009
- 资助金额:
$ 44.93万 - 项目类别:
Training Grant
Industrial CASE Account - Stirling 2008
工业案例账户 - 斯特灵 2008
- 批准号:
EP/G501750/1 - 财政年份:2009
- 资助金额:
$ 44.93万 - 项目类别:
Training Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
多臂Bandit process中的Bayes非参数方法
- 批准号:71771089
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
ARC Research Hub for Smart Process Design and Control
ARC 智能过程设计和控制研究中心
- 批准号:
IH230100010 - 财政年份:2024
- 资助金额:
$ 44.93万 - 项目类别:
Industrial Transformation Research Hubs
Machining process control with active spindle equipped with positioning and sensing functions
使用配备定位和传感功能的主动主轴进行加工过程控制
- 批准号:
23H01314 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of continuous process on ethanol fermentation by dimorphic Mucor sp. with control of morphological changing factor
二态毛霉连续乙醇发酵工艺的开发。
- 批准号:
23K13866 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advanced process control of AAV manufacture: digitalisation, PAT and automation to improve productivity, quality and consistency
AAV 制造的先进流程控制:数字化、PAT 和自动化,以提高生产率、质量和一致性
- 批准号:
10064155 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Collaborative R&D
Development of Fabrication Process for Hard Ceramic Coatings in Liquid Phase Based on Chemical Equilibrium Theory and Their Structural Control
基于化学平衡理论的液相硬质陶瓷涂层制备工艺及其结构控制研究
- 批准号:
23K04433 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
i-PREDICT: Integrated adaPtive pRocEss DesIgn and ConTrol
i-PREDICT:集成自适应过程设计和控制
- 批准号:
EP/W035006/1 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Research Grant
L-PBF process control to reduce hot-cracking and residual stress
L-PBF 工艺控制可减少热裂和残余应力
- 批准号:
2898429 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Studentship
Trustworthy AI for Industrial Process Control
用于工业过程控制的值得信赖的人工智能
- 批准号:
10064303 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Collaborative R&D
Cybersecurity in process control: Machine-learning detection and encrypted control
过程控制中的网络安全:机器学习检测和加密控制
- 批准号:
2227241 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant