Learning to Recognise Dynamic Visual Content from Broadcast Footage

学习识别广播镜头中的动态视觉内容

基本信息

  • 批准号:
    EP/I011811/1
  • 负责人:
  • 金额:
    $ 62.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

This research is in the area of computer vision - making computers which can understand what is happening in photographs and video. As humans we are fascinated by other humans, and capture endless images of their activities, for example home movies of our family on holiday, video of sports events or CCTV footage of people in a town center. A computer capable of understanding what people are doing in such images would be able to do many jobs for us, for example finding clips of our children waving, fast forwarding to a goal in a football game, or spotting when someone starts a fight in the street. For Deaf people, who use a language combining hand gestures with facial expression and body language, a computer which could visually understand their actions would allow them to communicate in their native language. While humans are very good at understanding what people are doing (and can learn to understand special actions such as sign language), this has proved extremely challenging for computers.Much work has tried to solve this problem, and works well in particular settings for example the computer can tell if a person is walking so long as they do it clearly and face to the side, or can understand a few sign language gestures as long as the signer cooperates and signs slowly. We will investigate better models for recognising activities by teaching the computer by showing it many example videos. To make sure our method works well for all kinds of setting we will use real world video from movies and TV. For each video we have to tell the computer what it represents, for example throwing a ball or a man hugging a woman . It would be expensive to collect and label lots of videos in this way, so instead we will extract approximate labels automatically from subtitle text and scripts which are available for TV. Our new methods will combine learning from lots of approximately labelled video (cheap because we get the labels automatically), use of contextual information such as which actions people do at the same time, or how one action leads to another ( he hits the man, who falls to the floor ), and computer vision methods for understanding the pose of a person (how they are standing), how they are moving, and the objects which they are using.By having lots of video to learn from, and methods for making use of approximate labels, we will be able to make stronger and more flexible models of human activities. This will lead to recognition methods which work better in the real world and contribute to applications such as interpreting sign language and automatically tagging video with its content.
这项研究属于计算机视觉领域——制造能够理解照片和视频中发生的事情的计算机。作为人类,我们被其他人所吸引,并捕捉他们活动的无休止的图像,例如我们家庭度假的家庭电影,体育赛事的视频或市中心人们的闭路电视镜头。一台能够理解人们在这些图像中做什么的计算机将能够为我们做很多工作,例如找到我们孩子挥手的片段,在足球比赛中快进到一个进球,或者发现有人在街上打架。对于聋哑人来说,他们使用一种结合了手势、面部表情和肢体语言的语言,一台可以从视觉上理解他们动作的计算机将使他们能够用母语交流。虽然人类非常善于理解人们在做什么(并且可以学习理解特殊动作,如手语),但这对计算机来说是极具挑战性的。很多工作都试图解决这个问题,并且在特定的环境下工作得很好,例如,只要一个人走得清楚,脸向一边,计算机就能判断出他是否在走路,或者只要签字人配合并缓慢地做手势,计算机就能理解一些手语手势。我们将通过向计算机展示许多示例视频,来研究更好的活动识别模型。为了确保我们的方法适用于各种设置,我们将使用来自电影和电视的真实世界视频。对于每个视频,我们必须告诉计算机它代表什么,例如扔一个球或一个男人拥抱一个女人。以这种方式收集和标记大量视频将是昂贵的,因此我们将从电视可用的字幕文本和脚本中自动提取近似标签。我们的新方法将结合从大量近似标记的视频中学习(便宜,因为我们自动获得标签),使用上下文信息,例如人们同时做哪些动作,或者一个动作如何导致另一个动作(他击中了那个人,他摔倒在地),以及计算机视觉方法来理解一个人的姿势(他们如何站立),他们如何移动,以及他们正在使用的物体。通过大量的视频学习,以及使用近似标签的方法,我们将能够建立更强大、更灵活的人类活动模型。这将导致识别方法在现实世界中更好地工作,并有助于解释手语和自动标记视频内容等应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric Mining: Scaling Geometric Hashing to Large Datasets
几何挖掘:将几何哈希扩展到大型数据集
  • DOI:
    10.1109/iccvw.2015.135
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gilbert A
  • 通讯作者:
    Gilbert A
Sign Language Recognition using Sequential Pattern Trees
使用序列模式树的手语识别
  • DOI:
    10.1109/cvpr.2012.6247928
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eng-Jon Ong
  • 通讯作者:
    Eng-Jon Ong
Scene Flow Estimation using Intelligent Cost Functions
  • DOI:
    10.5244/c.28.108
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Hadfield;R. Bowden
  • 通讯作者:
    Simon Hadfield;R. Bowden
Image and video mining through online learning
  • DOI:
    10.1016/j.cviu.2017.02.001
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gilbert;R. Bowden
  • 通讯作者:
    Andrew Gilbert;R. Bowden
Scene particles: unregularized particle-based scene flow estimation.
场景粒子:基于非正则粒子的场景流估计。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Bowden其他文献

Learning multi-kernel distance functions using relative comparisons
  • DOI:
    10.1016/j.patcog.2005.05.011
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eng-Jon Ong;Richard Bowden
  • 通讯作者:
    Richard Bowden
An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems
网格虚拟阴极惯性静电约束聚变系统的实验研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Bowden
  • 通讯作者:
    Richard Bowden
Langmuir probe measurements of the secondary electron population across the cathodic pre-sheath of a DC argon discharge
朗缪尔探针测量直流氩放电阴极预鞘中的二次电子群
  • DOI:
    10.1063/5.0130291
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Nicholas Ranson;Richard Bowden;J. Khachan;N. Claire
  • 通讯作者:
    N. Claire
Electric potential in a magnetically confined virtual cathode fusion device
磁约束虚拟阴极聚变装置中的电势
  • DOI:
    10.1063/5.0040792
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Richard Bowden;J. Khachan
  • 通讯作者:
    J. Khachan
Supplementary Material – Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV
补充材料 – 放松一下:通过观看 SlowTV 学习重建世界
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaime Spencer;Chris Russell;Simon Hadfield;Richard Bowden
  • 通讯作者:
    Richard Bowden

Richard Bowden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Bowden', 18)}}的其他基金

ROSSINI: Reconstructing 3D structure from single images: a perceptual reconstruction approach
ROSSINI:从单个图像重建 3D 结构:感知重建方法
  • 批准号:
    EP/S016317/1
  • 财政年份:
    2019
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
ExTOL: End to End Translation of British Sign Language
ExTOL:英国手语的端到端翻译
  • 批准号:
    EP/R03298X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
LILiR2 - Language Independent Lip Reading
LILiR2 - 独立于语言的唇读
  • 批准号:
    EP/E027946/1
  • 财政年份:
    2007
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
LTER Cross-site: Collaborative Research: DIRT: A Cross-continental, Experimental Study of Forest Soil Organic Matter and Nitrogen Dynamics
LTER 跨站点:合作研究:DIRT:森林土壤有机质和氮动态的跨大陆实验研究
  • 批准号:
    0087010
  • 财政年份:
    2000
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Standard Grant
Improvement of Soil and Ecosystem Analysis Laboratory
土壤与生态系统分析实验室的改进
  • 批准号:
    9151189
  • 财政年份:
    1991
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Standard Grant

相似海外基金

Using population genomics to recognise and prevent the emergence and establishment of Klebsiella pneumoniae high-risk lineages
利用群体基因组学识别和预防肺炎克雷伯菌高危谱系的出现和建立
  • 批准号:
    2665127
  • 财政年份:
    2021
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Studentship
Using a combined machine learning and bio-automation approach to understand, recognise and control the bacterial stress landscape
使用机器学习和生物自动化相结合的方法来理解、识别和控制细菌应激状况
  • 批准号:
    2281125
  • 财政年份:
    2019
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Studentship
A novel vision system with unique algorithms to recognise, count & size apples on trees to greatly improve crop forecasting and management to maximise yield and optimise market price - Applecount -
一种新颖的视觉系统,具有独特的识别、计数算法
  • 批准号:
    710522
  • 财政年份:
    2014
  • 资助金额:
    $ 62.41万
  • 项目类别:
    GRD Proof of Concept
How can we help parents recognise unhealthy body weight in their children?
我们如何帮助父母认识到孩子不健​​康的体重?
  • 批准号:
    MR/J00054X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
Learning to Recognise Dynamic Visual Content from Broadcast Footage
学习识别广播镜头中的动态视觉内容
  • 批准号:
    EP/I012001/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
Learning to Recognise Dynamic Visual Content from Broadcast Footage
学习识别广播镜头中的动态视觉内容
  • 批准号:
    EP/I01229X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Research Grant
Understanding the Molecular Basis of Epididymal Maturation: How Does the Epididymis Modify Spermatozoa, Allowing them to Recognise the Egg ?
了解附睾成熟的分子基础:附睾如何改变精子,让它们识别卵子?
  • 批准号:
    nhmrc : 1010753
  • 财政年份:
    2011
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Project Grants
Using fossil insects and plants to recognise past human impacts on Pacific island biodiversity
利用昆虫和植物化石来认识过去人类对太平洋岛屿生物多样性的影响
  • 批准号:
    DP0878694
  • 财政年份:
    2008
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Discovery Projects
How we recognise the orientation of objects: a combined neurophyschological / eye movement study
我们如何识别物体的方向:神经生理学/眼动联合研究
  • 批准号:
    DP0211342
  • 财政年份:
    2002
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Discovery Projects
How we recognise the orientation of objects: a combined neurophyschological / eye movement study
我们如何识别物体的方向:神经生理学/眼动联合研究
  • 批准号:
    ARC : DP0211342
  • 财政年份:
    2002
  • 资助金额:
    $ 62.41万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了