Coordination Chemistry for Energy and Our Sustainable Futures (ChemEnSus)

能源和可持续未来的配位化学 (ChemEnSus)

基本信息

  • 批准号:
    EP/I011870/2
  • 负责人:
  • 金额:
    $ 156.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This high-impact, challenging proposal brings together innovative ideas in coordination chemistry within a single inter and multidisciplinary project to open up new horizons across molecular, nanoscale and materials science. Our VISION is to apply coordination chemistry to the design and preparation of new multi-functional porous materials to deliver fundamental scientific and technological advances, and provide innovative solutions to one of the key issues of the 21st Century, that of clean, renewable energy. This will be achieved by creating paradigm shifts in the control of chemical hierarchy and interactions within the confined and multi-functionalized space generated by designed porous metal-organic framework (MOF) materials. Our STRATEGY is thus to develop a world-leading, overarching and fundamental research program with critical mass across complementary areas of physical sciences and engineering through the expertise and collaboration of six research groups. We target inter-related studies on i. porosity in the solid state in self-assembled hybrid materials for gas and volatile organic compound (voc) storage, sequestration and reactivity; ii. porosity in membranes for gas separations and purification for fuel cell applications; and iii. porosity at surfaces for sensing devices and applications. After 5 years we will deliver high capacity hydrogen storage materials that function at ambient temperatures. This will overcome a current major technological barrier unlocking the potential of hydrogen as a viable, clean replacement for fossil fuels and enabling the Hydrogen Economy to become a reality. The impact and significance of such ground-breaking advances will be huge. Our need and reliance upon fossil fuels for transport would be slashed and a new clean energy vector based on the hydrogen fuel cell with zero carbon emissions at the point of use would be achieved. However, fuel cells are notoriously sensitive to gas purity, and thus, in order to realise our overall ambition, we must also understand how hydrogen and other contaminant/competitor substrates, such as other gases, water and vocs from biomass and water electrolysis, interact, bind and are sensed within hybrid materials. Thus, issues of removal, purification, transport and sensing of hydrogen and its contaminants represent fundamental scientific and technological challenges that go hand-in-hand with the huge challenge of hydrogen storage. Programme Grant funding will support the scientific, intellectual and technological inter-dependence of the cross-disciplinary research strands of synthesis, characterisation, storage, purification and sensing. It will support the necessary coordinated and interactive effort to undertake fundamental studies and analysis of how assembled porosity behaves and how it can be controlled at different regime levels, at the micro-, meso- and macro- levels. Four inter-linked research THEMES are identified within the programme: 1. Core fundamental science: synthesis, assembly, modelling and characterisation; 2. Properties and function: gas and voc uptake, selectivity and reactivity; 3 Gas sieving, fuel cell membranes, theory, analysis and multi-scale modelling; 4. Surface templating and sensing devices.The programme of work demands the managerial and financial flexibility and freedom that consolidated funding brings in order to deliver transformative and disruptive research. The training of 10 PDRA- and 15 PhD-level scientists for future employment in the UK will be delivered in an exciting, stimulating and curiosity-driven environment. This will be interlinked to appropriate and extensive knowledge transfer and outreach activities to maximise the impact of research outputs. The application is underpinned by significant funding of 24.2M in current research income held by the PI and CIs, and by 4.57M of matched funding reflecting the unequivocal support of the host institutions for this proposal.
这项高影响力、具有挑战性的提案将配位化学方面的创新想法聚集在一个跨学科和多学科的项目中,以开辟分子、纳米和材料科学的新视野。我们的愿景是将配位化学应用于新型多功能多孔材料的设计和制备,以实现根本的科学和技术进步,并为21世纪的关键问题之一--清洁、可再生能源--提供创新的解决方案。这将通过在设计的多孔金属-有机骨架(MOF)材料产生的受限和多功能空间内创造控制化学等级和相互作用的范式转变来实现。因此,我们的战略是通过六个研究小组的专业知识和合作,在物理科学和工程的互补领域发展一个世界领先的、统筹兼顾的基础研究计划。我们的目标是1.用于气体和挥发性有机化合物(VOC)储存、封存和反应性的自组装杂化材料中固态孔隙率的相关研究;燃料电池气体分离和提纯用膜的孔隙率;用于传感设备和应用的表面孔隙度。5年后,我们将提供可在常温下使用的高容量储氢材料。这将克服目前的一个主要技术障碍,释放氢作为化石燃料的可行、清洁替代品的潜力,并使氢经济成为现实。这种突破性进展的影响和意义将是巨大的。我们运输对化石燃料的需求和依赖将大幅减少,并将实现以氢燃料电池为基础的新的清洁能源载体,在使用点实现零碳排放。然而,众所周知,燃料电池对气体纯度非常敏感,因此,为了实现我们的总体抱负,我们还必须了解氢和其他污染物/竞争对手的底物,如其他气体、水和来自生物质和水电解的VOCs,如何在混合材料中相互作用、结合和感知。因此,氢及其污染物的去除、提纯、运输和传感问题是与氢储存的巨大挑战并驾齐驱的根本性的科学和技术挑战。方案赠款资金将支持合成、表征、储存、提纯和传感等跨学科研究链在科学、智力和技术方面的相互依存。它将支持开展必要的协调和互动努力,对组合的孔隙度如何表现以及如何在微观、中观和宏观的不同制度层面上加以控制进行基础性研究和分析。该方案确定了四个相互关联的研究主题:1.核心基础科学:合成、组装、模拟和表征;2.性质和功能:气体和挥发性有机化合物的吸收、选择性和反应性;3.气体筛选、燃料电池膜、理论、分析和多尺度模拟;4.表面模板和传感设备。工作方案需要综合供资带来的管理和财务灵活性和自由,以便开展变革性和颠覆性研究。对10名PDRA级和15名博士级科学家的培训将在一个令人兴奋、刺激和好奇心驱动的环境中进行,以便将来在英国就业。这将与适当和广泛的知识转让和外联活动相互关联,以最大限度地发挥研究成果的影响。这项申请得到了私营部门和独联体现有研究收入中2420万英镑的大量资助,以及457万英镑的配对资金,这反映了主办机构对这一提议的明确支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Switching intermolecular interactions by confinement in carbon nanotubes.
通过碳纳米管的限制来切换分子间相互作用。
Porous Metal-Organic Polyhedra: Morphology, Porosity, and Guest Binding.
多孔金属有机多面体:形态,孔隙率和宾客结合。
  • DOI:
    10.1021/acs.inorgchem.0c01935
  • 发表时间:
    2020-11-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Argent SP;da Silva I;Greenaway A;Savage M;Humby J;Davies AJ;Nowell H;Lewis W;Manuel P;Tang CC;Blake AJ;George MW;Markevich AV;Besley E;Yang S;Champness NR;Schröder M
  • 通讯作者:
    Schröder M
A Coordination Network Featuring Two Distinct Copper(II) Coordination Environments for Highly Selective Acetylene Adsorption.
一个配位网络,具有两个不同的铜(II)协调环境,用于高度选择性的乙炔吸附。
  • DOI:
    10.1002/chem.202201188
  • 发表时间:
    2022-09-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong MWS;Argent SP;Moreau F;Trenholme WJF;Morris CG;Lewis W;Easun TL;Schröder M
  • 通讯作者:
    Schröder M
Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal-Organic Framework.
  • DOI:
    10.1021/jacs.8b08433
  • 发表时间:
    2018-11-21
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Carter JH;Han X;Moreau FY;da Silva I;Nevin A;Godfrey HGW;Tang CC;Yang S;Schröder M
  • 通讯作者:
    Schröder M
Simultaneous neutron powder diffraction and microwave characterisation at elevated temperatures.
在高温下同时进行中子粉末衍射和微波表征。
  • DOI:
    10.1039/d1cp03658k
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barter M
  • 通讯作者:
    Barter M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Schroder其他文献

AutoScrum: Automating Project Planning Using Large Language Models
AutoScrum:使用大型语言模型自动化项目规划
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Schroder
  • 通讯作者:
    Martin Schroder

Martin Schroder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Schroder', 18)}}的其他基金

Sir Henry Royce Institute - Manchester Build
亨利·莱斯爵士学院 - 曼彻斯特建设
  • 批准号:
    EP/P025498/1
  • 财政年份:
    2016
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Research Grant
Sir Henry Royce Institute - Manchester and NNL Equipment
亨利·莱斯爵士研究所 - 曼彻斯特和 NNL 设备
  • 批准号:
    EP/P025021/1
  • 财政年份:
    2016
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Research Grant
High Intensity High Sensitivity X-ray Diffaction
高强度高灵敏度X射线衍射
  • 批准号:
    EP/P001386/1
  • 财政年份:
    2016
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Research Grant
Coordination Chemistry for Energy and Our Sustainable Futures (ChemEnSus)
能源和可持续未来的配位化学 (ChemEnSus)
  • 批准号:
    EP/I011870/1
  • 财政年份:
    2011
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Research Grant
Modulated Metal-Organic Frameworks for Hydrogen Storage
用于储氢的调制金属有机框架
  • 批准号:
    EP/I020942/1
  • 财政年份:
    2011
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Research Grant

相似国自然基金

SCIENCE CHINA Chemistry
  • 批准号:
    21224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China Chemistry
  • 批准号:
    21024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
运用Linkage Chemistry合成新型聚合物缀合物和刷形共聚物
  • 批准号:
    20974058
  • 批准年份:
    2009
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Electrolytes with High Energy Density for Redox-Flow Batteries Based on Chemistry of Solubility
基于溶解度化学的氧化还原液流电池高能量密度电解质的开发
  • 批准号:
    23K04918
  • 财政年份:
    2023
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pyrrole Chemistry for Chemical Biology and Energy
化学生物学和能源领域的吡咯化学
  • 批准号:
    CRC-2019-00014
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Canada Research Chairs
Solid-Solid Interfacial Chemistry in Energy Storage and Conversion Systems
能量存储和转换系统中的固-固界面化学
  • 批准号:
    RGPIN-2019-05540
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
Conference: CAS-Climate: Materials Chemistry in Electrochemical Energy Storage
会议:CAS-气候:电化学储能中的材料化学
  • 批准号:
    2232131
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Standard Grant
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
  • 批准号:
    RGPIN-2019-04346
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
Physics and Chemistry of Materials for Energy Storage
储能材料物理与化学
  • 批准号:
    195527-2012
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
New Technologies for Sustainable Chemistry: An Organometallic Future in Clean Energy
可持续化学新技术:清洁能源的有机金属未来
  • 批准号:
    RGPIN-2020-04480
  • 财政年份:
    2022
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Chemistry - Fundamental Insights and a Tool for Addressing Materials, Energy and Environmental Challenges
量子化学——解决材料、能源和环境挑战的基本见解和工具
  • 批准号:
    RGPIN-2017-04966
  • 财政年份:
    2021
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
  • 批准号:
    RGPIN-2019-04346
  • 财政年份:
    2021
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
New Technologies for Sustainable Chemistry: An Organometallic Future in Clean Energy
可持续化学新技术:清洁能源的有机金属未来
  • 批准号:
    RGPIN-2020-04480
  • 财政年份:
    2021
  • 资助金额:
    $ 156.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了