Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
基本信息
- 批准号:RGPIN-2019-04346
- 负责人:
- 金额:$ 7.65万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solar and wind energy, while abundant sources of energy in Canada (NRCan statistics), are by their very nature intermittent. For personalized energy applications such as mobile electronics, as well as stationary microgrid- and large grid-scale considerations, energy storage is absolutely necessary. Lithium ion batteries (LIBs) are widespread for portable electronics applications, and we are seeing the first examples of grid-scale (gigawatt scale) battery storage, worldwide. These commercial LIBs use what are called 'conventional' graphite anodes that have a theoretical gravimetric capacity of 372 mAhg-1. Silicon, on the other hand, is of great interest due to its theoretical gravimetric capacity that is an order of magnitude larger, ~4200 mAhg-1. Imagine for a moment a world where batteries last ten times longer, and yet are the same weight. The keys to accessing high capacity silicon-based anodes are multifold, and several critical aspects depend exquisitely upon the interfacial chemistry of the silicon surface. Very high surface area nanostructured silicon (e.g. amorphous nanoparticulate silicon, crystalline silicon nanoparticles) is needed to enable the lithium ions to cycle in and out of the material with accompanying volume expansion and contraction without damage. Bulk silicon cannot accommodate the stress of these volume changes, leading to pulverization and exposure of freshly cleaved and highly reactive surfaces to the electrolyte; these interfaces then react in-situ with the electrolyte to form surface species that have profound effects on battery performance. Our group has been working on silicon surface chemistry for over two decades, and we will apply our expertise to the study and application of nanostructured silicon anodes, to produce surface coatings that are modular, and are designed to transport ions selectively, maintain charge transport, and protect the silicon during expansion and contraction of electrochemical cycling. These coatings will be prepared before the silicon is integrated within the anode, and via in-situ chemical reactivity during cycling. To balance the high capacity silicon anode, a high capacity partner cathode is needed in a full cell configuration, since the overall battery performance is restricted by the electrode with the lowest capacity. A standard commercial metal oxide cathode would only result in a small increase in capacity over a regular graphite anode. To overcome this limitation, and take advantage of the silicon anode, chalcogenide cathodes, for instance sulfur and selenium, will be used in a full cell configuration. Again, control over the silicon surface chemistry is critical, and thus functionalization will be the key to the development of highly reversible, long-lived high capacity silicon batteries. The final goal is the development of silicon surface chemistry that leads to the production of high capacity, stable silicon electrodes for large-scale batter applications.
太阳能和风能虽然在加拿大有丰富的能源(NRCan统计数据),但就其本质而言是间歇性的。对于个性化的能源应用,如移动的电子产品,以及固定的微电网和大电网规模的考虑,能量存储是绝对必要的。锂离子电池(LIB)广泛用于便携式电子产品应用,我们正在全球范围内看到电网规模(千兆瓦规模)电池存储的第一个例子。这些商业LIB使用所谓的“常规”石墨阳极,其理论重量容量为372 mAhg-1。另一方面,由于硅的理论重量容量大一个数量级,约4200 mAhg-1,因此硅受到极大关注。想象一下,在这个世界上,电池的寿命是原来的十倍,但重量却一样。获得高容量硅基阳极的关键是多方面的,几个关键方面取决于硅表面的界面化学。需要非常高表面积的纳米结构化硅(例如,无定形纳米颗粒硅、晶体硅纳米颗粒),以使锂离子能够循环进出材料,伴随体积膨胀和收缩而没有损坏。块体硅不能适应这些体积变化的应力,导致粉碎和暴露于电解质的新分裂和高反应性表面;这些界面然后与电解质原位反应,形成对电池性能有深远影响的表面物质。 我们的团队已经在硅表面化学方面工作了二十多年,我们将把我们的专业知识应用于纳米结构硅阳极的研究和应用,以生产模块化的表面涂层,并设计用于选择性地传输离子,保持电荷传输,并在电化学循环的膨胀和收缩期间保护硅。这些涂层将在硅与阳极结合之前制备,并在循环过程中通过原位化学反应制备。为了平衡高容量硅阳极,在全电池配置中需要高容量的配对阴极,因为整体电池性能受到最低容量电极的限制。标准商业金属氧化物阴极将仅导致容量比常规石墨阳极小的增加。为了克服这种限制,并利用硅阳极,硫属化物阴极,例如硫和硒,将用于全电池配置。同样,对硅表面化学的控制是至关重要的,因此官能化将是开发高度可逆、长寿命高容量硅电池的关键。最终目标是开发硅表面化学,从而为大规模电池应用生产高容量,稳定的硅电极。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Buriak, Jillian其他文献
Buriak, Jillian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Buriak, Jillian', 18)}}的其他基金
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2021
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2019
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and Applications of Self-Assembly of Block Copolymer Nanostructures on Surfaces
嵌段共聚物纳米结构表面自组装的基础与应用
- 批准号:
RGPIN-2014-05195 - 财政年份:2018
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and Applications of Self-Assembly of Block Copolymer Nanostructures on Surfaces
嵌段共聚物纳米结构表面自组装的基础与应用
- 批准号:
RGPIN-2014-05195 - 财政年份:2017
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Silicon-Tethered 分子内 Corey-Chaykovsky 反应和 Tandem Heterocyclopropylolefin 环化反应研究
- 批准号:20802044
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Tri-Cure Hybrid Organo-Silicon Coatings for Surface Preservation
I-Corps:用于表面保护的 Tri-Cure 混合有机硅涂料
- 批准号:
2327701 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Standard Grant
Controllability Improvement of Silicon Surface Finishing Using Electroless Reaction and Its Application for Resource Recovery and Elemental Analysis
化学镀反应硅表面处理的可控性改进及其在资源回收和元素分析中的应用
- 批准号:
22K04779 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Peeling of Nano-Particle (PNP) process for localized material removing on a silicon carbide (SiC) surface by controlling of magnetic field
通过控制磁场来去除碳化硅 (SiC) 表面上的局部材料的纳米粒子 (PNP) 剥离工艺
- 批准号:
21J14569 - 财政年份:2021
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2021
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
Giant Exchange Reaction from Hydrogen to Deuterium on a Nanocrystalline Silicon Surface
纳米晶硅表面从氢到氘的巨大交换反应
- 批准号:
20H04455 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation on control of SiC surface and silicide-less contact using silicon-cap-annealing
利用硅帽退火控制 SiC 表面和无硅化物接触的研究
- 批准号:
20K05328 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding and control of silicon surface oxidation by supersonic molecular beams and synchrotron radiation real-time photoelectron spectroscopy
超声分子束和同步辐射实时光电子能谱理解和控制硅表面氧化
- 批准号:
20K05338 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Precision Silicon Surface Chemistry for Energy Storage Applications
用于储能应用的精密硅表面化学
- 批准号:
RGPIN-2019-04346 - 财政年份:2019
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
The study of surface liquid phase epitaxy for the fabrication of silicon nano-structures
表面液相外延制备硅纳米结构的研究
- 批准号:
18K14129 - 财政年份:2018
- 资助金额:
$ 7.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




