Multi-Wavelength Sized Finite Elements for Three Dimensional Elastic Wave Problems

三维弹性波问题的多波长有限元

基本信息

  • 批准号:
    EP/I018042/1
  • 负责人:
  • 金额:
    $ 52.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Elastic wave propagation modelling arises in many engineering applications, including traffic vibrations from roads and railways, seismic induced vibrations and foundation construction, etc. The numerical modelling of these problems, in frequency domain by the conventional Finite Element Method (FEM), requires finite element grids sufficiently fine in comparison with the wavelengths, to get accurate results. When typically, the piecewise linear finite element is implemented, around ten nodal points per lower wavelength are needed, to ensure adequate resolution of the wave pattern. However, in the case of high frequency (small wavelength) and/or large domain of interest, the finite element mesh requires a large number of elements, and consequently the procedure becomes computationally expensive and impractical. The aim of the proposed work is to accurately model three-dimensional elastic wave problems with fewer elements, capable of containing many wavelengths per nodal spacing, and without refining the mesh at each frequency. The resulting improvement in computational efficiency will enable problems of practical interest to be simulated using computing facilities available in most engineering design offices.
弹性波传播模拟出现在许多工程应用中,包括公路和铁路的交通振动,地震诱发振动和基础建设等。这些问题的数值模拟,在频域中的传统有限元法(FEM),需要有限元网格足够细的波长相比,得到准确的结果。当典型地实施分段线性有限元时,需要每较低波长大约十个节点,以确保波图案的足够分辨率。然而,在高频(小波长)和/或感兴趣的大域的情况下,有限元网格需要大量的元素,因此该过程在计算上变得昂贵且不切实际。所提出的工作的目的是准确地模拟三维弹性波问题,具有更少的元素,能够包含许多波长每个节点间距,并在每个频率不细化网格。由此产生的计算效率的提高将使实际感兴趣的问题能够使用大多数工程设计办公室提供的计算设施进行模拟。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation and computational aspects of a 3D elastic wave modelling by PUFEM
  • DOI:
    10.1016/j.apm.2017.05.013
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    5
  • 作者:
    M. Mahmood;O. Laghrouche;J. Trevelyan;A. Kacimi
  • 通讯作者:
    M. Mahmood;O. Laghrouche;J. Trevelyan;A. Kacimi
High-order finite elements for the solution of Helmholtz problems
  • DOI:
    10.1016/j.compstruc.2017.06.010
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    K. Christodoulou;O. Laghrouche;M. S. Mohamed;J. Trevelyan
  • 通讯作者:
    K. Christodoulou;O. Laghrouche;M. S. Mohamed;J. Trevelyan
Error analysis for numerical solution by PUMFEM of 3D elastic wave problems
3D弹性波问题的PUMFEM数值求解误差分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmood M S
  • 通讯作者:
    Mahmood M S
An a posteriori error estimate for the generalized finite element method for transient heat diffusion problems
Multi-wavelength sized ¯nite elements for three-dimensional elastic wave problems
三维弹性波问题的多波长尺寸有限元
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmood M S
  • 通讯作者:
    Mahmood M S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Omar Laghrouche其他文献

Bernstein–Bézier $$H({\text {curl}})$$ -Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems
  • DOI:
    10.1007/s10915-023-02381-5
  • 发表时间:
    2023-11-04
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Nawfel Benatia;Abdellah El Kacimi;Omar Laghrouche;Ahmed Ratnani
  • 通讯作者:
    Ahmed Ratnani

Omar Laghrouche的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Omar Laghrouche', 18)}}的其他基金

Development of special finite elements for two-dimensional elastic wave problems
二维弹性波问题特殊有限元的开发
  • 批准号:
    EP/D076587/1
  • 财政年份:
    2007
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Research Grant

相似海外基金

Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
  • 批准号:
    10088290
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Collaborative R&D
Tuneable short-wavelength infrared mode-locked fibre lasers
可调谐短波长红外锁模光纤激光器
  • 批准号:
    EP/Y001915/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Research Grant
Effects of sub-wavelength photonic nanostructures on thermally-activated delayed fluorescence
亚波长光子纳米结构对热激活延迟荧光的影响
  • 批准号:
    EP/Y021495/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Research Grant
CAS: CAREER: Synthetic Designs Toward Wavelength-Tunable Production of Reactive Intermediates for Selective Photooxidation
CAS:职业:用于选择性光氧化的反应中间体的波长可调生产的合成设计
  • 批准号:
    2340404
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Continuing Grant
SUB-WAVELENGTH HOLOGRAPHIC LITHOGRAPHY STEPPER FOR INTEGRATED CIRCUIT PRODUCTION (HoliSTEP)
用于集成电路生产的亚波长全息光刻步进机 (HoliSTEP)
  • 批准号:
    10102121
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    EU-Funded
High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
  • 批准号:
    EP/Z001250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Fellowship
Superconducting single-photon detectors for far-infrared wavelength range
用于远红外波长范围的超导单光子探测器
  • 批准号:
    23K17323
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Measuring neutrino mass with multi-wavelength cosmological observations
通过多波长宇宙学观测测量中微子质量
  • 批准号:
    23K13095
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of "Fusion Color Material" Combining Structural Colors and Specific Wavelength Absorption
结构色与特定波长吸收相结合的“融合色材料”的构建
  • 批准号:
    23KJ0014
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
First-Principles Modeling of Pulsar Multi-Wavelength Emission
脉冲星多波长发射的第一原理建模
  • 批准号:
    2308111
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了