Sequential Monte Carlo: Towards Degeneracy-Free Methods

顺序蒙特卡罗:迈向无简并方法

基本信息

  • 批准号:
    EP/I017984/1
  • 负责人:
  • 金额:
    $ 12.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Imperfectly observed evolving systems arise throughout the human world. Weather forecasting, modelling stock prices, transcribing music or interpreting human speech automatically are just a few of the situations in which imperfect observations of a system which evolves in time are all that is available whilst the underlying system is the thing in which we are interested: Given satellite observations and sparse localised measurements, we'd like to accurately characterise the weather now and predict future weather; given measurements of pitch at discrete times we'd like a computer to be able to produce a meaningful description of what was being said at the time.Surprisingly, it's possible to model a great number of these problems using a common framework, known as a state space model (or hidden Markov model). Inferring the likely value of the unobserved process based upon a sequence of observations, as those observations become available is in principle reasonably straightforward but it requires the evaluation of integrals which cannot be solved by analytical mathematics and which are too complex to deal with accurately via simple numerical methods. Simulation-based techniques have been developed to address these problems and are now the most powerful collection of tools for estimating the current state of the unobserved process given all of the observations received so far. Much effort has been dedicated in recent years to designing algorithms to efficiently describe the likely path of the unobserved process from the beginning of the observation sequence up to the current time in a similar way. This problem is much harder as each observation we receive tells us a little more about the likely history of the process and continually updating this ever-longer list of locations in an efficient way is far from simple.The methods proposed here will attempt to extend simulation-based statistical techniques in a new direction which is particularly well suited to characterisation of the whole path of the unobserved process and not just its terminal value. Two different strategies based around the same premise - that sometimes several smaller simulations can in a particular sense outperform a single larger simulation for the same computational cost - will be investigated. The techniques developed will be investigated both theoretically and empirically.In addition to developing and analysing new computational techniques, the project will provide software libraries which simplify the use of these methods in real problems (hopefully to the extent that scientists who are expert in particular application domains will be able to apply the techniques directly to their own problems).The research could be considered successful if:1/ It leads to new methods for performing inference in state space models.2/ These methods can be implemented with less application-specific tuning that existing methods require or these methods provide more efficient use of computational resources.3/ These methods are sufficiently powerful to allow the use of more complex models than are currently practical.4/ The methods are adopted by practitioners in at least some of the many areas in which these techniques might be usefully employed.The long term benefits could include more realistic assessment of risk in financial systems, more reliable tracking and prediction of meteorological phenomena and improved technological products wherever there is a need to dynamically incorporate knowledge arising from measurements as they become available. There will be particular advantages in settings in which the full path of the imperfectly observed underlying process is of interest but there is scope for improvement even when this is not the case.
不完全观察的进化系统出现在整个人类世界。天气预报、模拟股票价格、转录音乐或自动翻译人类语言只是其中的几种情况,在这种情况下,对一个随时间演变的系统的不完美观测是所有可用的,而底层系统是我们感兴趣的东西:给定卫星观测和稀疏的局部测量,我们希望准确地预测现在的天气并预测未来的天气;我们希望计算机能够对当时所说的话进行有意义的描述。令人惊讶的是,可以使用一个通用的框架来建模大量的这些问题,称为状态空间模型(或隐马尔可夫模型)。根据一系列观测结果推断未观测到的过程的可能值,因为这些观测结果变得可用,原则上相当简单,但它需要评估积分,这些积分无法通过分析数学解决,并且过于复杂,无法通过简单的数值方法准确处理。基于模拟的技术已经开发出来,以解决这些问题,现在是最强大的工具,估计目前的状态,未观察到的过程中所收到的所有意见,到目前为止。近年来,许多努力致力于设计算法,以有效地描述未观察到的过程的可能路径,从观察序列的开始到当前时间以类似的方式。这个问题要困难得多,因为我们收到的每一个观察都告诉我们更多关于这个过程的可能历史,并且以有效的方式不断更新这个越来越长的位置列表远非简单。在一个新的方向,这是特别适合于未观察到的过程,而不仅仅是其终端的整个路径的特征统计技术值两种不同的策略基于相同的前提-有时几个较小的模拟可以在特定意义上优于一个单一的较大的模拟相同的计算成本-将进行调查。将从理论和经验两方面研究所开发的技术,除了开发和分析新的计算技术外,该项目还将提供软件库,简化这些方法在真实的问题中的使用(希望在特定应用领域的专家能够将这些技术直接应用于他们自己的问题)。如果符合以下条件,研究可以被认为是成功的:1/它导致了在状态空间模型中执行推理的新方法。2/这些方法可以通过现有方法所需的更少的特定于应用程序的调优来实现,或者这些方法提供了对计算资源的更有效的使用。3/这些方法足够强大,可以使用比当前实际更复杂的模型。4/这些方法至少在一些领域被从业者采用,这些技术可能会被有效地使用。长期的好处可能包括对金融系统的风险进行更现实的评估,更可靠地跟踪和预测气象现象,并改进技术产品,只要有必要动态地纳入从测量中获得的知识,变得可用。在不完全观察的基础过程的完整路径是感兴趣的但即使不是这种情况也有改进的余地的设置中,将有特别的优势。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic filtering of static dipoles in magnetoencephalography
脑磁图中静态偶极子的动态滤波
Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model
并行顺序蒙特卡洛采样器和隐马尔可夫模型中状态数的估计
A Simple Approach to Maximum Intractable Likelihood Estimation
最大棘手似然估计的简单方法
  • DOI:
    10.48550/arxiv.1301.0463
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rubio F
  • 通讯作者:
    Rubio F
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
嵌入式隐马尔可夫模型和粒子马尔可夫链蒙特卡罗方法
  • DOI:
    10.48550/arxiv.1610.08962
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finke A
  • 通讯作者:
    Finke A
On the exact and $\varepsilon$-strong simulation of (jump) diffusions
关于(跳跃)扩散的精确且 $varepsilon$ 强模拟
  • DOI:
    10.3150/14-bej676
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Pollock M
  • 通讯作者:
    Pollock M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Johansen其他文献

Adam Johansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Johansen', 18)}}的其他基金

Robust, Scalable Sequential Monte Carlo with Application To Urban Air Quality
稳健、可扩展的顺序蒙特卡罗在城市空气质量中的应用
  • 批准号:
    EP/T004134/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant

相似国自然基金

DDH头臼匹配性三维空间形态表征及PAO 手术髋臼重定向Monte Carlo随机最优控 制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
复杂空间上具有特殊约束的Monte Carlo方法
  • 批准号:
    12371269
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
  • 批准号:
    12372297
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
  • 批准号:
    21863010
  • 批准年份:
    2018
  • 资助金额:
    41.0 万元
  • 项目类别:
    地区科学基金项目
间接优化的高效Monte Carlo声传播研究
  • 批准号:
    61772458
  • 批准年份:
    2017
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
  • 批准号:
    51606049
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
  • 批准号:
    41674076
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Real-time phylogenetics using sequential Monte Carlo with tree sequences
使用顺序蒙特卡罗和树序列进行实时系统发育
  • 批准号:
    EP/W006790/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
  • 批准号:
    573681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Online topic modelling via sequential Monte Carlo methods
通过顺序蒙特卡罗方法进行在线主题建模
  • 批准号:
    563714-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Solving the sampling problem in molecular simulations by Sequential Monte Carlo
用顺序蒙特卡罗解决分子模拟中的采样问题
  • 批准号:
    EP/V048864/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
Advances in Sequential Monte Carlo Methods for Complex Bayesian Models
复杂贝叶斯模型的顺序蒙特卡罗方法的进展
  • 批准号:
    DP200102101
  • 财政年份:
    2020
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Discovery Projects
Robust, Scalable Sequential Monte Carlo with Application To Urban Air Quality
稳健、可扩展的顺序蒙特卡罗在城市空气质量中的应用
  • 批准号:
    EP/T004134/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
New Sequential Monte Carlo methods
新的顺序蒙特卡罗方法
  • 批准号:
    527760-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
  • 批准号:
    1238332
  • 财政年份:
    2013
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
Sequential Monte Carlo in Random Environments
随机环境中的顺序蒙特卡罗
  • 批准号:
    EP/K023330/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Research Grant
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
  • 批准号:
    1356977
  • 财政年份:
    2013
  • 资助金额:
    $ 12.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了