Robust, Scalable Sequential Monte Carlo with Application To Urban Air Quality
稳健、可扩展的顺序蒙特卡罗在城市空气质量中的应用
基本信息
- 批准号:EP/T004134/1
- 负责人:
- 金额:$ 79.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is driven by two substantial considerations.Methods for conducting inference, i.e. estimating the parameters of an indirectly observed system, in large complex systems are urgently needed. Existing technology does not generally scale well to the very large data sets which arise in many modern data-rich contexts. Most of the recent developments in computational statistics which aim at improving the scalability of existing algorithms have focused on data which has very particular forms and in particular can be viewed as very large numbers of replicates of measurements which are independent of one another. Such methods are not suitable for data sets which have strong spatial and temporal structures as, for example, many data sets obtained in urban analytic settings do. This project aims to develop a suite of methodological tools for conducting inference in models of this sort in a computationally efficient way, by exploiting the structure of the models in order to provide simultaneously efficient computational tools and good estimation. Furthermore, leveraging recent developments in the field of robust statistics, these methods will be adapted to deal with settings in which the modelling is imperfect and the data generating process is not exactly characterized by the mathematical model. This robustness is essential to obtain good performance in real, complex scenarios.Air quality monitoring is a tremendously important and tremendously challenging area. Diverse sensor networks exist on different scales and provide measurements with quite different characteristics to one another. Fusing this information as observations become available is a large scale statistical inference problem. Indeed, problems of this type motivate the methodological development of this project and will serve as an extensive test-bed for the developed methodology. An extended application of those methods to air quality monitoring in the Greater London area with the support of the Greater London Authority provides the second major aspect of this proposal.
这个项目是由两个实质性的考虑推动的:迫切需要在大型复杂系统中进行推理的方法,即估计间接观测系统的参数。现有技术通常不能很好地扩展到在许多现代数据丰富的环境中出现的非常大的数据集。计算统计学的大多数最新发展旨在提高现有算法的可伸缩性,主要集中在具有非常特殊形式的数据,特别是可以被视为彼此独立的非常大量的测量重复。这种方法不适合于具有强烈的时空结构的数据集,例如,在城市分析环境中获得的许多数据集就是这样。该项目旨在开发一套方法学工具,通过利用模型的结构,以计算高效的方式在这类模型中进行推理,以便同时提供高效的计算工具和良好的估计。此外,利用稳健统计领域的最新发展,这些方法将被调整,以处理建模不完善和数据生成过程不完全由数学模型描述的情况。要在真实、复杂的场景中获得良好的性能,这种稳健性是必不可少的。空气质量监测是一个非常重要且具有极大挑战性的领域。不同的传感器网络存在于不同的尺度上,并提供彼此具有完全不同特征的测量结果。随着观测结果的出现,融合这些信息是一个大规模的统计推断问题。事实上,这类问题推动了这个项目的方法论发展,并将成为发展方法论的广泛试验台。在大伦敦管理局的支持下,将这些方法扩大到大伦敦地区的空气质量监测,是这项提议的第二个主要方面。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:C. Salvi;M. Lemercier;Chong Liu;Blanka Hovarth;T. Damoulas;Terry Lyons
- 通讯作者:C. Salvi;M. Lemercier;Chong Liu;Blanka Hovarth;T. Damoulas;Terry Lyons
Properties of marginal sequential Monte Carlo methods
边际序贯蒙特卡罗方法的性质
- DOI:10.1016/j.spl.2023.109914
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Crucinio F
- 通讯作者:Crucinio F
Limit theorems for cloning algorithms
- DOI:10.1016/j.spa.2021.04.007
- 发表时间:2019-02
- 期刊:
- 影响因子:1.4
- 作者:Letizia Angeli;S. Grosskinsky;A. M. Johansen
- 通讯作者:Letizia Angeli;S. Grosskinsky;A. M. Johansen
Simple conditions for convergence of sequential Monte Carlo genealogies with applications
顺序蒙特卡罗谱系与应用收敛的简单条件
- DOI:10.1214/20-ejp561
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Brown S
- 通讯作者:Brown S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Johansen其他文献
Adam Johansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Johansen', 18)}}的其他基金
Sequential Monte Carlo: Towards Degeneracy-Free Methods
顺序蒙特卡罗:迈向无简并方法
- 批准号:
EP/I017984/1 - 财政年份:2011
- 资助金额:
$ 79.25万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 79.25万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
- 批准号:
EP/Z532770/1 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant














{{item.name}}会员




