Groups acting on Asymptotically CAT(0) spaces
作用于渐进 CAT(0) 空间的群
基本信息
- 批准号:EP/I020276/1
- 负责人:
- 金额:$ 27.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric group theory is the mathematical tool for studying symmetry. This is achieved by investigating groups via their actions on geometric spaces. A fundamental class of objects studied by geometric group theorists are manifolds or varieties which are solutions sets to collections of equations. A collection of equations or parameters could arise naturally in different areas of mathematics, of science and in economics. Hence research in geometric group theory is of paramount importance. In this proposal we are interested in groups acting on trees, a theory that was initiated by Bass and Serre and has profound influence on the splittings of groups as amalgamated free products and HNN extensions. If a group splits, then one can decompose it into smaller, more manageable pieces. The fundamental group links group theory to geometry and topology. Splitting the fundamental group of a manifold holds the key in some cases to splitting the manifold itself into smaller better-understood sub-manifolds. This is related to important conjectures in mathematics like the virtual Haken conjecture. We hope that the work arising from this proposal will enlighten us on the phenomenon of splittings of groups and manifolds. A second theme of the project is to exhibit the richness of the class of what we call asymptotically CAT(0) spaces which heuristically are metric spaces appearing to have non-positive curvature when viewed from increasingly distant observation points. Trees and hyperbolic spaces are natural examples. We hope to construct examples of asymptotically CAT(0) graphs which not hyperbolic in the sense of Gromov. This is related to a question of Erdos held in esteem among computer scientists and graph theorists. Evidently a resolution of Erdos' question will allow us to solve geometric problems algorithmically on computer.
几何群论是研究对称性的数学工具。这是通过研究群体在几何空间上的作用来实现的。几何群理论家研究的一类基本对象是流形或簇,它们是方程集合的解集。在数学、科学和经济学的不同领域中,可以自然地产生一组方程或参数。因此,几何群论的研究是至关重要的。在这个建议中,我们感兴趣的群体作用于树,一个理论,是由巴斯和塞尔发起的,并有深远的影响分裂的群体合并的自由产品和HNN扩展。如果一个组分裂,那么可以将其分解为更小,更易于管理的部分。基本群将群论与几何学和拓扑学联系起来。在某些情况下,分裂流形的基本群是将流形本身分裂成更小更好理解的子流形的关键。这与虚哈肯猜想等数学中的重要命题有关。我们希望这项工作所产生的建议将启发我们的现象分裂的群体和流形。该项目的第二个主题是展示我们称之为渐近CAT(0)空间的类的丰富性,这些空间是度量空间,当从越来越远的观测点观察时,似乎具有非正曲率。树和双曲空间是自然的例子。我们希望构造出在Gromov意义下不是双曲的渐近CAT(0)图的例子。这与计算机科学家和图形理论家所推崇的鄂尔多斯问题有关。显然,解决鄂尔多斯问题将使我们能够解决几何问题的算法在计算机上。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ONE-RELATOR QUOTIENTS OF GRAPH PRODUCTS
图积的一相关商
- DOI:10.1142/s0218196713500239
- 发表时间:2013
- 期刊:
- 影响因子:0.8
- 作者:ANTOLÍN Y
- 通讯作者:ANTOLÍN Y
Rank gradient and cost of Artin groups and their relatives
Artin 群体及其亲属的排名梯度和成本
- DOI:10.4171/ggd/300
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Kar A
- 通讯作者:Kar A
On Deficiency Gradient of Groups
关于群体的匮乏梯度
- DOI:10.1093/imrn/rnv149
- 发表时间:2016
- 期刊:
- 影响因子:1
- 作者:Kar A
- 通讯作者:Kar A
Relative ends, l 2 -invariants and property (T)
相对末端、l 2 -不变量和属性 (T)
- DOI:10.1016/j.jalgebra.2011.02.030
- 发表时间:2011
- 期刊:
- 影响因子:0.9
- 作者:Kar A
- 通讯作者:Kar A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Kar其他文献
Rigidity of Almost-Isometric Universal Covers
几乎等距通用盖的刚性
- DOI:
10.1512/iumj.2016.65.5781 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Aditi Kar;J.;B. Schmidt - 通讯作者:
B. Schmidt
Rank Gradient for Artin Groups and their Relatives
Artin 群体及其亲属的排名梯度
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Aditi Kar;N. Nikolov - 通讯作者:
N. Nikolov
On growth of homology torsion in amenable groups
顺应群中同调挠率的增长
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0.8
- 作者:
Aditi Kar;P. Kropholler;N. Nikolov - 通讯作者:
N. Nikolov
Aditi Kar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Multifunctional nanomedicine prototypes acting as prophylactics and virus-assisted targeted drug delivery vehicle (NANOPROV)
作为预防剂和病毒辅助靶向药物输送载体的多功能纳米药物原型(NANOPROV)
- 批准号:
MR/Y50337X/1 - 财政年份:2024
- 资助金额:
$ 27.04万 - 项目类别:
Research Grant
Gene expression profiling of skin ulcers for short-acting in vivo gene therapy
皮肤溃疡的基因表达谱用于短效体内基因治疗
- 批准号:
23K19673 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Intranasal, rapid-acting vaccine for all seasonal and pandemic influenza viruses
针对所有季节性和大流行性流感病毒的鼻内速效疫苗
- 批准号:
10080057 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
EU-Funded
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
XVIR-110 an ultra-long-acting INSTI for HIV pre-exposure prophylaxis in IND-enabling studies
XVIR-110 是一种超长效 INSTI,用于 IND 支持研究中的 HIV 暴露前预防
- 批准号:
10764186 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
Surmounting substance use disorder using an ultra-long acting injectable platform.
使用超长效注射平台克服药物滥用障碍。
- 批准号:
10586277 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
RFA-PS-23-004, Innovative Administration of Long-Acting Injectables for HIV Treatment Enhancement at Home (INVITE-Home)
RFA-PS-23-004,长效注射剂的创新管理,用于在家加强艾滋病毒治疗(INVITE-Home)
- 批准号:
10795542 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
Ultra-long-acting Biodegradable and Tunable Polymeric Solid Implant for HIV Treatment Maintenance
用于维持艾滋病毒治疗的超长效可生物降解和可调聚合物固体植入物
- 批准号:
10759149 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别:
Long-acting naltrexone for pre-release prisoners: A randomized trial of mobile treatment
长效纳曲酮用于释放前囚犯:流动治疗的随机试验
- 批准号:
10738933 - 财政年份:2023
- 资助金额:
$ 27.04万 - 项目类别: