WORKSHOP: Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion
研讨会:多尺度和高对比度偏微分方程:从建模,到数学分析,到反演
基本信息
- 批准号:EP/I028668/1
- 负责人:
- 金额:$ 2.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this proposal is to ask for support from the Council towards the cost of a workshop on PDE which will be held in Oxford between June 28th and July 1st 2011.The mathematical analysis of PDE modelling materials presenting multiple scales have been an active area of research for more than 40 years. The study of the corresponding imaging, or reconstruction, problem is a more recent one. If the material parameters of the PDE present high contrast ratio, the solutions of the PDE become particularly challenging to analyse and to compute. Similar problems occur in time dependent equations in the frequency domain for high frequency. On the other hand, very high frequency regimes, or very contrasted materials, were considered first in imaging, as well-differentiated areas are, at first sight, simpler to locate by ad-hoc methods. Over the last decade the analysis of the inversion problem at moderate frequencies, the rigorous derivation of asymptotics at very high frequencies, and the regularity properties of solutions of elliptic PDE in very heterogeneous media have received a lot of attention.Part of the attention is due to the fact that these problems are particularly challenging. For another part, it is because of the numerous applications of these results in material sciences and in bio-medical imaging. Recently, emerging bio-medical imaging methods based on the observation of non-linear interactions of coupled physical phenomena (such as for example vibro-acoustography) have also become the subject of active research. Progresses on the mathematical understanding of the direct and inverse problems associated to these hybrid imaging methods are crucial to obtain enhanced imaging possibilities, beyond what is obtained by the integration of different imaging modalities taken separately. The focus of this workshop will be to stimulate collaborations between the participants, in the hope of achieving significant progress in (a) complete understanding of the direct problem with high contrast or high frequencies, (b) unified approaches to the inverse problem for both small and large contrast or frequencies, and (c) mathematical modelling of emerging experimental measurement methods. With this goal in mind, we wish to bring together senior experts and young researchers interested in the mathematical problems associated with imaging of multi-scale, or high contrast materials. All the mathematicians participating in the workshop are actively working on different aspects on these problems. Their expertise comprises heterogeneous random media, regularity theory for linear and non-linear PDE with very contrasted coefficients, mathematical invisibility (or cloaking), imaging and numerical reconstruction, numerical methods for high frequency elliptic problems, and emerging biomedical imaging methods. We have also invited an experimental physicist, whose recent work is devoted to new imaging methods for liquid crystals. The mathematical challenges associated with the mathematical formulation and understanding of these experiments and other hybrid measurement methods could be one of the applications of theoretical developments we hope this workshop will produce.
该提案的目的是请求理事会支持将于2011年6月28日至7月1日在牛津举行的PDE研讨会的费用。呈现多尺度的PDE建模材料的数学分析是40多年来的一个活跃研究领域。相应的成像或重建问题的研究是最近的一个。如果PDE的材料参数呈现高对比度,则PDE的解对于分析和计算变得特别具有挑战性。类似的问题出现在高频频域中的时间相关方程中。另一方面,在成像中首先考虑非常高的频率区域或对比度非常高的材料,因为乍一看,区分良好的区域更容易通过特设方法定位。在过去的十年中,中等频率下的反演问题的分析,在非常高的频率下的渐近性的严格推导,以及在非常不均匀介质中的椭圆偏微分方程的解的正则性得到了很多关注,部分关注是由于这些问题特别具有挑战性。另一方面,这是因为这些结果在材料科学和生物医学成像中的大量应用。最近,基于对耦合物理现象的非线性相互作用的观察的新兴生物医学成像方法(例如振动声成像)也已经成为活跃研究的主题。与这些混合成像方法相关的正问题和逆问题的数学理解的进展对于获得增强的成像可能性是至关重要的,超出了通过单独采取的不同成像方式的集成所获得的。这次讲习班的重点是促进与会者之间的合作,以期在以下方面取得重大进展:(a)完全理解高对比度或高频率的直接问题;(B)统一处理小对比度或高频率和大对比度或高频率的反问题的方法;(c)对新出现的实验测量方法进行数学建模。考虑到这一目标,我们希望将对多尺度或高对比度材料成像相关数学问题感兴趣的高级专家和年轻研究人员聚集在一起。参加研讨会的所有数学家都在积极地研究这些问题的不同方面。他们的专业知识包括异质随机介质,具有非常对比系数的线性和非线性PDE的规律性理论,数学不可见性(或隐身),成像和数值重建,高频椭圆问题的数值方法,以及新兴的生物医学成像方法。我们还邀请了一位实验物理学家,他最近的工作致力于液晶的新成像方法。与这些实验和其他混合测量方法的数学公式和理解相关的数学挑战可能是我们希望本次研讨会产生的理论发展的应用之一。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yves Capdeboscq其他文献
Combining Radon transform and electrical capacitance tomography for a 2d + 1 imaging device
将氡变换和电容断层扫描相结合用于 2d + 1 成像设备
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.1
- 作者:
Yves Capdeboscq;H. Mamigonians;Aslam Sulaimalebbe;V. Tshitoyan - 通讯作者:
V. Tshitoyan
Improved Hashin–Shtrikman Bounds for Elastic Moment Tensors and an Application
弹性矩张量的改进 Hashin-Shtrikman 界限及其应用
- DOI:
10.1007/s00245-007-9022-9 - 发表时间:
2008 - 期刊:
- 影响因子:1.8
- 作者:
Yves Capdeboscq;Hyeonbae Kang - 通讯作者:
Hyeonbae Kang
On local non-zero constraints in PDE with analytic coefficients
带解析系数的偏微分方程中的局部非零约束
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
G. Alberti;Yves Capdeboscq - 通讯作者:
Yves Capdeboscq
Homogenization of a neutronic critical diffusion problem with drift
具有漂移的中子临界扩散问题的均质化
- DOI:
10.1017/s0308210500001785 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Yves Capdeboscq - 通讯作者:
Yves Capdeboscq
Homogenization and localization with an interface
通过界面实现同质化和本地化
- DOI:
10.1512/iumj.2003.52.2352 - 发表时间:
2003 - 期刊:
- 影响因子:1.1
- 作者:
G. Allaire;Yves Capdeboscq;Andrey L. Piatnitski - 通讯作者:
Andrey L. Piatnitski
Yves Capdeboscq的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Research Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
- 批准号:
2415082 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Standard Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 2.01万 - 项目类别:
Continuing Grant