Workshop Recent Advances in Geometric Group Theory

研讨会几何群论的最新进展

基本信息

  • 批准号:
    EP/I033645/1
  • 负责人:
  • 金额:
    $ 2.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The goal of this proposal is to organise a three-day workshop at the University of Southampton from June 29th to July 1st, 2011. Geometric Group Theory is a vast area of Mathematics that combines ideas from Algebra, Analysis, Geometry and Topology and makes important contributions to all of these subjects. This area has been rapidly developing during the last 20 years, after M. Gromov'sseminal work, which introduced the concepts of hyperbolic spaces, hyperbolic and relatively hyperbolic groups, developed their theories and demonstrated the potential applications. Naturally, one of the principal themes of Geometric Group Theory is the study of such `non-positively curved' groups. Other subjects, which started to develop independently, but which now constitute importantparts of Geometric Group Theory are Teichmueller Theory and its analogue in Culler-Vogtmann Space, Small Cancellation Theory, Coarse Geometry, the study of Cube Complexes and Analytic Group Theory.Some of the leading experts in the area have already given preliminary agreements to attend and speak on the workshop. The workshop will aim to stimulate discussions among its participants in order to promote further research in this exciting area. The participants at early career stages (Ph. D. students and post-docs) will have an excellent opportunity to learn the latest methods and techniques in a variety of topics within Geometric Group Theory.
本提案的目标是于2011年6月29日至7月1日在南安普顿大学举办为期三天的研讨会。几何群论是一个广阔的数学领域,它结合了代数,分析,几何和拓扑学的思想,并对所有这些学科做出了重要贡献。自M.格罗莫夫的开创性工作,介绍了双曲空间,双曲和相对双曲群的概念,发展了他们的理论,并展示了潜在的应用。自然,几何群论的主要主题之一就是研究这种“非正曲”群。其他开始独立发展但现在构成几何群论重要组成部分的学科包括Teichmueller理论及其在Culler-Vogtmann空间中的类似物、小消去理论、粗几何、立方复形研究和解析群论。该领域的一些领先专家已经初步同意参加研讨会并发言。讲习班的目的是激发与会者之间的讨论,以促进这一令人兴奋的领域的进一步研究。参与者在职业生涯的早期阶段(博士学位。学生和博士后)将有一个极好的机会学习几何群论中各种主题的最新方法和技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashot Minasyan其他文献

One-relator groups with torsion are conjugacy separable
  • DOI:
    10.1016/j.jalgebra.2013.02.015
  • 发表时间:
    2013-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ashot Minasyan;Pavel Zalesskii
  • 通讯作者:
    Pavel Zalesskii
Correction to: Acylindrical hyperbolicity of groups acting on trees
  • DOI:
    10.1007/s00208-018-1699-3
  • 发表时间:
    2018-06-07
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ashot Minasyan;Denis Osin
  • 通讯作者:
    Denis Osin
Some examples of invariably generated groups
  • DOI:
    10.1007/s11856-021-2211-4
  • 发表时间:
    2021-10-06
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Ashot Minasyan
  • 通讯作者:
    Ashot Minasyan

Ashot Minasyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashot Minasyan', 18)}}的其他基金

Profinite topology on non-positively curved groups
非正曲群上的有限拓扑
  • 批准号:
    EP/H032428/1
  • 财政年份:
    2010
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Research Grant

相似海外基金

Workshop on Recent Advances in the Modeling and Simulation of the Mechanics of Nanoscale Materials; Philadelphia, Pennsylvania; August 21-23, 2019
纳米材料力学建模与仿真最新进展研讨会;
  • 批准号:
    1929268
  • 财政年份:
    2019
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Future Research Directions in RF Technologies from MHz to THz; Honolulu, Hawaii, June 8th, 2017.
研讨会:从 MHz 到 THz 射频技术的最新进展和未来研究方向;
  • 批准号:
    1737435
  • 财政年份:
    2017
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches
研讨会:不连续伽辽金方法及相关方法的最新进展和挑战
  • 批准号:
    1720825
  • 财政年份:
    2017
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Workshop titled "Recent Advances and Challenges in Statistical Methods"
题为“统计方法的最新进展和挑战”的研讨会
  • 批准号:
    9365860
  • 财政年份:
    2016
  • 资助金额:
    $ 2.95万
  • 项目类别:
Workshop: Recent Advances in Computational Methods for Nanoscale Phenomena; Ann Arbor, Michigan; August 29-31, 2016
研讨会:纳米尺度现象计算方法的最新进展;
  • 批准号:
    1622585
  • 财政年份:
    2016
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
International workshop on "Recent Advances in Viral diseases of animals-implications on One Health"
“动物病毒性疾病的最新进展——对统一健康的影响”国际研讨会
  • 批准号:
    BB/K021206/1
  • 财政年份:
    2013
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Research Grant
Workshop on Recent Advances in General Topology, Dimension Theory, Continuum Theory and Dynamical Systems
一般拓扑、维度理论、连续介质理论和动力系统最新进展研讨会
  • 批准号:
    1212436
  • 财政年份:
    2012
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Workshop on Recent Advances in Topological and Measure-Theoretic Methods in Dynamical Systems; North Bay, Ontario
动力系统拓扑和测度理论方法最新进展研讨会;
  • 批准号:
    1005910
  • 财政年份:
    2010
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
4th Annual Microbial Observatories PI Meeting and Workshop: Recent Advances and Prospects for Microbial Discovery Science to be held in Washington DC on March 1-3, 2007
第四届年度微生物观测站 PI 会议和研讨会:微生物发现科学的最新进展和前景将于 2007 年 3 月 1-3 日在华盛顿特区举行
  • 批准号:
    0721167
  • 财政年份:
    2007
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Workshop on Recent Advances in Algebraic Systems and Control Theory
代数系统和控制理论最新进展研讨会
  • 批准号:
    0414149
  • 财政年份:
    2004
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了