Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches

研讨会:不连续伽辽金方法及相关方法的最新进展和挑战

基本信息

  • 批准号:
    1720825
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

The international conference entitled "Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches" will be held at the Institute for Mathematics and its Applications at the University of Minnesota from June 29 to July 1, 2017. This award supports junior participants' travel. The event brings together a variety of researchers from at least 14 countries/regions. They range from internationally renowned experts to early career mathematicians and PhD students. The event will summarize recent advances made both in the theory and implementation of the Discontinuous Galerkin and related numerical approaches, and to identify new challenges and opportunities in these areas. The conference will also have a significant educational component, with each talk required to feature introductory parts at a level accessible to graduate students, and ample discussion sessions throughout the conference. To further promote cross-pollination and mentoring, there will be moderated panel sessions where participants explore the frontiers of different research areas, possibilities of new connections between areas and new applications, and exciting opportunities of new collaborations. It will help junior researchers broaden their perspective and create research ties with more senior members in these fields.Discontinuous Galerkin and related approaches have been adopted in areas ranging from mechanical engineering to the simulation of muscles. In recent decades, deep theoretical advances have been made and wide-ranging applications discovered for these approaches. They often lead to design of novel methods (e.g. Hybridizable discontinuous Galerkin methods, Virtual Element Methods, etc.) with superior properties in terms of accuracy, versatility, robustness and computational efficiency. They also leave open many exciting problems. This conference presents a rare but timely opportunity to summarize recent advances both in the theory and implementation of these methods, identify new challenges, and map out future research directions in related areas. The bringing together of people from different fields such as engineers, applied mathematicians, national lab researchers, will lead to cross-fertilization of ideas that normally does not happen in a conference of this size.
题为“不连续伽辽金方法及相关方法的最新进展与挑战”的国际会议将于2017年6月29日至7月1日在明尼苏达大学数学及其应用研究所举行。此奖项支持青少年参加者的旅行。该活动汇集了来自至少14个国家/地区的各种研究人员。他们既有国际知名专家,也有早期职业数学家和博士生。该活动将总结不连续伽辽金理论和实施以及相关数值方法的最新进展,并确定这些领域的新挑战和机遇。会议还将有一个重要的教育组成部分,每个演讲都需要以研究生可访问的水平为特色的介绍部分,并在整个会议期间提供充足的讨论环节。为了进一步促进交叉授粉和指导,将有主持人小组会议,与会者将探索不同研究领域的前沿,领域之间新联系和新应用的可能性,以及令人兴奋的新合作机会。它将帮助初级研究人员拓宽视野,并与这些领域的更资深成员建立研究联系。不连续伽辽金及其相关方法已被广泛应用于从机械工程到肌肉模拟等领域。近几十年来,这些方法取得了深刻的理论进展,并发现了广泛的应用。它们通常会导致设计出在精度、通用性、鲁棒性和计算效率方面具有优越性能的新方法(例如杂交不连续Galerkin方法、虚元方法等)。它们也留下了许多令人兴奋的问题。本次会议提供了一个难得而及时的机会来总结这些方法在理论和实施方面的最新进展,确定新的挑战,并规划相关领域的未来研究方向。来自工程师、应用数学家、国家实验室研究人员等不同领域的人聚集在一起,将导致思想的交流,这在这种规模的会议上通常是不会发生的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlai Chen其他文献

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem
基于后验误差估计的改进连续约束方法用于二维麦克斯韦问题的简化基近似
Multiple Solutions of Boundary Value Problems for nth-Order Singular Nonlinear Integrodifferential Equations in Abstract Spaces
抽象空间中n阶奇异非线性积分微分方程边值问题的多重解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Tingqiu Cao;Baoxia Qin
  • 通讯作者:
    Baoxia Qin
L1-ROC and R2-ROC: L1- and R2-based Reduced Over-Collocation methods for parametrized nonlinear partial differential equations
L1-ROC 和 R2-ROC:参数化非线性偏微分方程的基于 L1 和 R2 的减少过度搭配方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;S. Gottlieb;Lijie Ji;Y. Maday;Zhenli Xu
  • 通讯作者:
    Zhenli Xu
A reduced basis warm-start iterative solver for the parameterized linear systems
参数化线性系统的减基热启动迭代求解器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijin Hou;Yanlai Chen;Yinhua Xia
  • 通讯作者:
    Yinhua Xia
A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
降基近似框架下 inf-sup 稳定性常数下界的单调评估
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;J. Hesthaven;Y. Maday;Jerónimo Rodríguez
  • 通讯作者:
    Jerónimo Rodríguez

Yanlai Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlai Chen', 18)}}的其他基金

Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation
神经网络的减基增强及其在量子材料模拟中的应用
  • 批准号:
    2208277
  • 财政年份:
    2022
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Implementation of a Contextualized Computing Pedagogy in STEM Core Courses and Its Impact on Undergraduate Student Academic Success, Retention, and Graduation
在 STEM 核心课程中实施情境化计算教学法及其对本科生学业成功、保留和毕业的影响
  • 批准号:
    2030552
  • 财政年份:
    2020
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Rigorous Development of an Efficient Reduced Collocation Approach for High-Dimensional Parametric Partial Differential Equations
严格开发高维参数偏微分方程的高效简化配置方法
  • 批准号:
    1719698
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Developing reduced basis methods for Galerkin and Collocation framework
为 Galerkin 和 Collocation 框架开发简化基方法
  • 批准号:
    1216928
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似海外基金

Workshop on Recent Advances in the Modeling and Simulation of the Mechanics of Nanoscale Materials; Philadelphia, Pennsylvania; August 21-23, 2019
纳米材料力学建模与仿真最新进展研讨会;
  • 批准号:
    1929268
  • 财政年份:
    2019
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Future Research Directions in RF Technologies from MHz to THz; Honolulu, Hawaii, June 8th, 2017.
研讨会:从 MHz 到 THz 射频技术的最新进展和未来研究方向;
  • 批准号:
    1737435
  • 财政年份:
    2017
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop titled "Recent Advances and Challenges in Statistical Methods"
题为“统计方法的最新进展和挑战”的研讨会
  • 批准号:
    9365860
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
Workshop: Recent Advances in Computational Methods for Nanoscale Phenomena; Ann Arbor, Michigan; August 29-31, 2016
研讨会:纳米尺度现象计算方法的最新进展;
  • 批准号:
    1622585
  • 财政年份:
    2016
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
International workshop on "Recent Advances in Viral diseases of animals-implications on One Health"
“动物病毒性疾病的最新进展——对统一健康的影响”国际研讨会
  • 批准号:
    BB/K021206/1
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
Workshop on Recent Advances in General Topology, Dimension Theory, Continuum Theory and Dynamical Systems
一般拓扑、维度理论、连续介质理论和动力系统最新进展研讨会
  • 批准号:
    1212436
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop Recent Advances in Geometric Group Theory
研讨会几何群论的最新进展
  • 批准号:
    EP/I033645/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
Workshop on Recent Advances in Topological and Measure-Theoretic Methods in Dynamical Systems; North Bay, Ontario
动力系统拓扑和测度理论方法最新进展研讨会;
  • 批准号:
    1005910
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
4th Annual Microbial Observatories PI Meeting and Workshop: Recent Advances and Prospects for Microbial Discovery Science to be held in Washington DC on March 1-3, 2007
第四届年度微生物观测站 PI 会议和研讨会:微生物发现科学的最新进展和前景将于 2007 年 3 月 1-3 日在华盛顿特区举行
  • 批准号:
    0721167
  • 财政年份:
    2007
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Workshop on Recent Advances in Algebraic Systems and Control Theory
代数系统和控制理论最新进展研讨会
  • 批准号:
    0414149
  • 财政年份:
    2004
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了