DEVELOPMENT OF A SEMANTIC PARSER FOR MEDICAL TEXT
医学文本语义解析器的开发
基本信息
- 批准号:3374327
- 负责人:
- 金额:$ 14.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-08-01 至 1994-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to develop a natural language understanding system
specifically aimed at extracting relevant clinical facts from medical
reports. The system is based largely on a semantic parsing technique that
stresses the use of medical knowledge encoded in four forms. These forms
include: a hierarchy of terms embedded in a general purpose medical data
dictionary; a semantic network designed to capture knowledge concerning the
relative locations of different anatomic sites; a collection of frames
specifying allowable combinations of terms. These frames also have a
hierarchial organization designed to help the parser find an appropriate
format for the recognition and storage of a complex medical fact; a
transformational grammar attached to the hierarchy of frames which can
propose the different ways a medical fact, as indicated by the combined
terms in a frame, might be expressed; a causal network developed
specifically to allow disambiguation of the many incompletely expressed
facts that can be found in a medical report.
Both a lexicon expressing the different words known to the system and a
thesaurus expressing all meaningful phrases expected in the reporting
domain will also be built.
A system that uses this information to parse medical text will be
constructed and evaluated. The domains tested will be the reports of chest
x-rays and admitting history and physical examination for patients with
pulmonary and/or cardiac diseases. The evaluation will determine whether
relevant medical facts presented in the reports are captured and stored by
the natural language parser in an integrated, general purpose medical data
base. The goal of this project is to further techniques that allow the
encoding of medical information captured as free text into a form
appropriate for research, quality, assurance, and direct clinical decision
support.
该项目旨在开发一个自然语言理解系统
专门针对从医学中提取相关临床事实,
报道 该系统主要基于语义解析技术,
强调使用以四种形式编码的医学知识。 这些形式
包括:嵌入在通用医疗数据中术语的层次结构
字典;语义网络,旨在捕获有关
不同解剖部位的相对位置;帧的集合
指定允许的术语组合。 这些框架还具有
层次结构,旨在帮助分析器找到适当的
用于识别和存储复杂医学事实的格式;
转换语法附加到框架的层次结构,
提出不同的方式一个医疗事实,如所表示的组合
术语在一个框架中,可以表达;因果网络发展
特别是允许消除许多不完全表达的歧义,
可以在医疗报告中找到的事实。
表达系统已知的不同单词的词典和
表达报告中预期的所有有意义短语的同义词词典
域也将建成。
使用该信息来解析医学文本的系统将是
构建和评估。 测试的领域将是胸部的报告
X光片、入院史和体格检查,
肺和/或心脏疾病。 评估将确定是否
报告中呈现的相关医疗事实被捕获并存储,
综合通用医学数据中的自然语言解析器
基地 这个项目的目标是进一步的技术,使
将作为自由文本捕获的医学信息编码成表格
适用于研究、质量、保证和直接临床决策
支持.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER John HAUG其他文献
PETER John HAUG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER John HAUG', 18)}}的其他基金
Building Complex Disease Models using Ontologies and Data Repositories
使用本体和数据存储库构建复杂的疾病模型
- 批准号:
7836640 - 财政年份:2010
- 资助金额:
$ 14.34万 - 项目类别:
DEVELOPMENT OF A SEMANTIC PARSER FOR MEDICAL TEXT
医学文本语义解析器的开发
- 批准号:
2237761 - 财政年份:1991
- 资助金额:
$ 14.34万 - 项目类别:
DEVELOPMENT OF A SEMANTIC PARSER FOR MEDICAL TEXT
医学文本语义解析器的开发
- 批准号:
3374328 - 财政年份:1991
- 资助金额:
$ 14.34万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Fellowship