TOWARDS BIOLOGICALLY-INSPIRED ACTIVE-COMPLIANT-WING MICRO-AIR-VEHICLES

迈向仿生主动翼微型飞行器

基本信息

  • 批准号:
    EP/J001465/1
  • 负责人:
  • 金额:
    $ 31.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Natural fliers achieve exceptional aerodynamics by continuous adjustments on their geometry through a mix of dynamic wing compliance and distributed sensing and actuation. This enables them to routinely perform a wide range of manoeuvres including rapid turns, rolls, dives, and climbs with seeming ease. Despite a good knowledge of the physiology of bats and birds, engineering applications with active dynamic wing compliance capability are so far few and far-between. Recent advances in development of electroactive materials together with high-fidelity numerical/experimental methods provide a foundation to develop biologically-inspired dynamically-active wings that can achieve "on-demand" aerodynamic performance. However, this requires first to develop a thorough understanding of the dynamic coupling between the electro-mechanical structure of the membrane wing and its unsteady aerodynamics. In this collaborative initiative between the University of Southampton and Imperial College London, we will develop an integrated research programme that carries out high-fidelity experiments and computations to achieve a fundamental understanding of the dynamics of aero-electro-mechanical coupling in dynamically-actuated compliant wings. The goal is to utilise our understanding and devise control strategies that use integral actuation schemes to improve aerodynamic performance of membrane wings. The long-term goal of this project is to enable the use of soft robotics technology to build integrally-actuated wings for Micro Air Vehicles (MAV) that mimic the dynamic shape control capabilities of natural flyers.
自然飞行器通过动态机翼顺应性和分布式传感和驱动的组合不断调整其几何形状来实现卓越的空气动力学。这使他们能够经常进行广泛的演习,包括快速转弯,滚动,潜水,似乎轻松爬升。尽管对蝙蝠和鸟类的生理学有很好的了解,但到目前为止,具有主动动态机翼顺应能力的工程应用很少。电活性材料开发的最新进展以及高保真数值/实验方法为开发可以实现“按需”空气动力学性能的生物启发动态活性机翼提供了基础。然而,这需要首先发展一个全面的了解之间的动态耦合的机电结构的薄膜机翼和它的非定常空气动力学。在南安普顿大学和伦敦帝国理工学院之间的这一合作倡议中,我们将开发一个综合研究计划,进行高保真实验和计算,以实现对动态致动顺应性机翼中的气动机电耦合动力学的基本理解。我们的目标是利用我们的理解和设计的控制策略,使用整体驱动方案,以提高薄膜机翼的气动性能。该项目的长期目标是利用软机器人技术为微型飞行器(MAV)制造集成驱动的机翼,模仿自然飞行器的动态形状控制能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers
  • DOI:
    10.2514/1.j053522
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bleischwitz, R.;de Kat, R.;Ganapathisubramani, B.
  • 通讯作者:
    Ganapathisubramani, B.
Near-wake characteristics of rigid and membrane wings in ground effect
  • DOI:
    10.1016/j.jfluidstructs.2018.03.007
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    R. Bleischwitz;R. de Kat;B. Ganapathisubramani
  • 通讯作者:
    R. Bleischwitz;R. de Kat;B. Ganapathisubramani
Aerodynamic Step Input Response of Electro-Active Membrane Wings
电活性膜翼的气动阶跃输入响应
  • DOI:
    10.2514/6.2017-0056
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbu I
  • 通讯作者:
    Barbu I
Leading- and trailing-edge effects on the aeromechanics of membrane aerofoils
  • DOI:
    10.1016/j.jfluidstructs.2013.01.005
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    S. Arbós-Torrent;B. Ganapathisubramani;R. Palacios
  • 通讯作者:
    S. Arbós-Torrent;B. Ganapathisubramani;R. Palacios
Effects of aspect ratio on fluid-structure interactions in membrane wings
长径比对膜翼流固相互作用的影响
  • DOI:
    10.2514/6.2014-1250
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bleischwitz R
  • 通讯作者:
    Bleischwitz R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bharathram Ganapathisubramani其他文献

The effect of variations in experimental and computational fidelity on data assimilation approaches
  • DOI:
    10.1007/s00162-024-00708-y
  • 发表时间:
    2024-07-02
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Craig Thompson;Uttam Cadambi Padmanaban;Bharathram Ganapathisubramani;Sean Symon
  • 通讯作者:
    Sean Symon
Volumetric flow characterisation of a rectangular orifice impinging synthetic jet with single-camera light-field PIV
使用单相机光场 PIV 来表征矩形孔口撞击合成射流的体积流量
  • DOI:
    10.1016/j.expthermflusci.2020.110327
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhou Zhao;Junfei Ding;Shengxian Shi;Rene Kaufmann;Bharathram Ganapathisubramani
  • 通讯作者:
    Bharathram Ganapathisubramani
Determination of unsteady wing loading using tuft visualization
  • DOI:
    10.1007/s00348-024-03882-1
  • 发表时间:
    2024-09-27
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Francis De Voogt;Bharathram Ganapathisubramani
  • 通讯作者:
    Bharathram Ganapathisubramani
Influence of geometrical parameters on the hysteresis of flutter onset in confined configurations
  • DOI:
    10.1007/s00348-022-03532-4
  • 发表时间:
    2022-11-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Girish K. Jankee;Bharathram Ganapathisubramani
  • 通讯作者:
    Bharathram Ganapathisubramani

Bharathram Ganapathisubramani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bharathram Ganapathisubramani', 18)}}的其他基金

Turbulent flows over rough-walls under the influence of streamwise pressure gradients
在流向压力梯度的影响下,粗糙壁上的湍流
  • 批准号:
    EP/W026090/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
ary currents in turbulent flows over rough wallsSecond
湍流流过粗糙的墙壁第二
  • 批准号:
    EP/V00199X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Aerodynamics and aeroacoustics of turbulent flows over and past permeable rough surfaces
穿过可渗透粗糙表面的湍流的空气动力学和气动声学
  • 批准号:
    EP/S013296/1
  • 财政年份:
    2019
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Understanding and exploiting non-equilibrium effects on turbulent boundary layers: Towards realisable drag reduction strategies
理解和利用湍流边界层的非平衡效应:实现可实现的减阻策略
  • 批准号:
    EP/R034370/1
  • 财政年份:
    2018
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Effect of Separation and Stall on Aerofoil Noise
分离和失速对机翼噪声的影响
  • 批准号:
    EP/R010900/1
  • 财政年份:
    2018
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Surface-specific Moody-diagrams: A new paradigm to predict drag penalty of realistic rough surfaces with applications to maritime transport
特定于表面的穆迪图:预测现实粗糙表面阻力损失的新范式及其在海上运输中的应用
  • 批准号:
    EP/P009638/1
  • 财政年份:
    2017
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
CBET-EPSRC: Turbulent flows over multiscale heterogeneous surfaces
CBET-EPSRC:多尺度异质表面上的湍流
  • 批准号:
    EP/P021476/1
  • 财政年份:
    2017
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Towards drag reduction strategies for high Reynolds number wall-turbulence
针对高雷诺数壁湍流的减阻策略
  • 批准号:
    EP/L006383/1
  • 财政年份:
    2014
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Scale interactions in wall turbulence: Old challenges tackled with new perspectives
壁湍流中的尺度相互作用:用新视角解决旧挑战
  • 批准号:
    EP/I037717/1
  • 财政年份:
    2012
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Is Fine-Scale Turbulence Universal?
小尺度湍流是普遍存在的吗?
  • 批准号:
    EP/I004785/1
  • 财政年份:
    2011
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant

相似海外基金

(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
  • 批准号:
    EP/Z000998/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Fellowship
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
  • 批准号:
    10706026
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
  • 批准号:
    2907952
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Studentship
RET Site: Biologically Inspired Computing Models, Systems, and Applications
RET 站点:仿生计算模型、系统和应用
  • 批准号:
    2302070
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Standard Grant
CIF: Small: Learning, Optimization & Analysis for Biologically Inspired Community Networks
CIF:小型:学习、优化
  • 批准号:
    2311653
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Standard Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
  • 批准号:
    2325863
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Continuing Grant
Biologically inspired knee prosthesis
仿生膝关节假体
  • 批准号:
    RGPIN-2018-04022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing DNA sequence analysis algorithms using biologically inspired and mathematical sound analysis at the University of Tokyo
东京大学利用生物学启发和数学声音分析推进 DNA 序列分析算法
  • 批准号:
    577723-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Adaptive Action Representation for Biologically Inspired Robot Learning
仿生机器人学习的自适应动作表示
  • 批准号:
    577720-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
  • 批准号:
    RGPIN-2019-05223
  • 财政年份:
    2022
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了