Community Structure In Multislice Networks
多切片网络中的社区结构
基本信息
- 批准号:EP/J001759/1
- 负责人:
- 金额:$ 26.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network science, the study of systems of interconnected entities and their functional interactions, has three principal goals:1. Discover and enumerate the basic principles of networked systems.2. Use structure, dynamics, and demographics to infer functional interactions when they are not directly prescribed.3. Predict network structure and demographics, and use mathematical and computational methods to manipulate existing networks and design new networks with desired properties.Networks provide a powerful tool for representing and analysing complex systems of interacting entities. They arise in the physical, biological, social, and information sciences and can be used to represent interactions between proteins, friendships between people, hyperlinks between web pages, and so on. A network consists of a set of entities (called "vertices") that are connected to each other by ties (called "edges").Most studies of networks consider static networks with a single type of edge, and numerous tools have been developed to study such networks. However, networks that arise in applications are often more complicated. They can be "dynamic" in that they can have a time-dependent structure, which might represent changes in the committee assignments or voting patterns of politicians over time or different functional connectivity of brain regions during different parts of a motor activity. They can also be "multiplex" in that they include multiple edge types, such politicians who are connected both via common committee assignments and similar voting patterns.Although researchers have long been aware that networks in applications are both dynamic and multiplex, it is only in the past few years that high-quality data has become available to study such situations effectively. I recently helped develop a "multislice" framework for networks, along with accompanying algorithmic tools, which can be used for studying time-dependent and multpliex networks (Mucha et al, Science, 2010). The multislice framework departs from the norm in network science, as it formulates networks using three-dimensional arrays of numbers instead of the usual adjacency matrices (i.e., two-dimensional arrays). The 2010 paper developed a tool in multislice networks for the algorithmic detection of structures known as "communities", each of which consists of a set of vertices that are connected more densely to each other than they are to vertices in the rest of the network. The presence of different types of network edges, which are interrelated and evolve in time, raises conceptual and practical questions about network structure, and the multislice framework can be used to try to answer them. The proof of principle in our 2010 paper paves the way to studying dynamic and multiplex networks in subjects such as biology and political science. However, applying this framework to applications in practice will require considerable effort on both conceptual and application-oriented fronts. The proposed programme will make major headway towards this goal, especially in the area of community structure. Through my collaborations (see Letters of Support), I have access to large data sets from political science and biology. Overcoming the challenging nature of dynamic and multiplex data will yield interesting insights both conceptually and for applications. Much is known about community structure in static networks with only a single type of edge, but almost nothing is understood about community structure in either dynamic or multiplex networks. Most networks encountered in applications have such features, and my proposal directly addresses this issue.
网络科学,研究相互连接的实体及其功能相互作用的系统,有三个主要目标:1。发现并列举网络系统的基本原理。2.使用结构,动态,和人口统计推断功能的相互作用时,他们没有直接规定。3.预测网络结构和人口统计,并使用数学和计算方法来操纵现有网络和设计具有所需属性的新网络。网络为表示和分析交互实体的复杂系统提供了强大的工具。它们出现在物理、生物、社会和信息科学中,可以用来表示蛋白质之间的相互作用、人与人之间的友谊、网页之间的超链接等等。(称为“顶点”),这些顶点通过纽带相互连接网络的大多数研究考虑具有单一类型的边的静态网络,并且已经开发了许多工具来研究这样的网络。然而,在应用中出现的网络往往更加复杂。它们可以是“动态的”,因为它们可以具有时间依赖性结构,这可能代表委员会分配或政治家投票模式随时间的变化,或者在运动活动的不同部分期间大脑区域的不同功能连接。它们也可以是“多重”的,因为它们包括多个边缘类型,例如通过共同的委员会分配和相似的投票模式连接的政治家。虽然研究人员早就意识到应用中的网络是动态和多重的,但直到过去几年才有高质量的数据来有效地研究这种情况。我最近帮助开发了一个网络的“多层”框架,沿着算法工具,可用于研究时间依赖和多重网络(Mucha et al,Science,2010)。多层框架偏离了网络科学的规范,因为它使用三维数组而不是通常的邻接矩阵(即,二维数组)。2010年的论文开发了一种多层网络中的工具,用于算法检测被称为“社区”的结构,每个社区由一组顶点组成,这些顶点之间的连接比网络其余部分的顶点更紧密。不同类型的网络边缘的存在,它们是相互关联的,并随着时间的推移而演变,提出了关于网络结构的概念和实践问题,而多层框架可以用来尝试回答这些问题。我们2010年论文中的原理证明为研究生物学和政治学等学科中的动态和多元网络铺平了道路。然而,将这个框架应用到实际应用中,需要在概念和面向应用的方面做出相当大的努力。拟议的方案将在实现这一目标方面取得重大进展,特别是在社区结构方面。通过我的合作(见支持信),我可以访问政治学和生物学的大型数据集。克服动态和多重数据的挑战性将在概念上和应用上产生有趣的见解。人们对只有一种边的静态网络中的社区结构了解很多,但对动态网络或多重网络中的社区结构几乎一无所知。在应用中遇到的大多数网络都有这样的功能,我的建议直接解决了这个问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of core-periphery structure in networks using spectral methods and geodesic paths
- DOI:10.1017/s095679251600022x
- 发表时间:2016-12-01
- 期刊:
- 影响因子:1.9
- 作者:Cucuringu, Mihai;Rombach, Puck;Porter, Mason A.
- 通讯作者:Porter, Mason A.
COMMUNITY DETECTION IN TEMPORAL MULTILAYER NETWORKS, WITH AN APPLICATION TO CORRELATION NETWORKS
- DOI:10.1137/15m1009615
- 发表时间:2016-01-01
- 期刊:
- 影响因子:1.6
- 作者:Bazzi, Marya;Porter, Mason A.;Howison, Sam D.
- 通讯作者:Howison, Sam D.
Structure of triadic relations in multiplex networks
- DOI:10.1088/1367-2630/17/7/073029
- 发表时间:2015-07-31
- 期刊:
- 影响因子:3.3
- 作者:Cozzo, Emanuele;Kivelae, Mikko;Moreno, Yamir
- 通讯作者:Moreno, Yamir
The physics of spreading processes in multilayer networks
- DOI:10.1038/nphys3865
- 发表时间:2016-10-01
- 期刊:
- 影响因子:19.6
- 作者:De Domenico, Manlio;Granell, Clara;Arenas, Alex
- 通讯作者:Arenas, Alex
Mathematical Formulation of Multilayer Networks
- DOI:10.1103/physrevx.3.041022
- 发表时间:2013-12-04
- 期刊:
- 影响因子:12.5
- 作者:De Domenico, Manlio;Sole-Ribalta, Albert;Arenas, Alex
- 通讯作者:Arenas, Alex
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mason Porter其他文献
Mason Porter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mason Porter', 18)}}的其他基金
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
- 批准号:
2323343 - 财政年份:2023
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: MIM: Using multilayer interaction networks to predict microbiome assembly and function
合作研究:MIM:使用多层交互网络来预测微生物组的组装和功能
- 批准号:
2124903 - 财政年份:2021
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
ATD: Models of Spreading Dynamics in Multilayer Networks
ATD:多层网络中的传播动力学模型
- 批准号:
1922952 - 财政年份:2019
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
EU-Funded
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Discovery Projects
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Fellowship
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
- 批准号:
EP/X039285/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant