ATD: Models of Spreading Dynamics in Multilayer Networks

ATD:多层网络中的传播动力学模型

基本信息

  • 批准号:
    1922952
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The PI will undertake a three-year project to study opinion and content spreading in multichannel communication networks. Many people rely on online sources for their news and information; and people spread diverse content on these interconnected media. However, the content on media varies in quality and trustworthiness, from high-quality and thoroughly-researched content to puff pieces and misinformation. Both the quality and the viewpoint of online content, which the PI will incorporate into novel mathematical models of opinion and content spreading, have an enormous influence on online discussions on issues such as economic and social policy and on interactions with others of differing views. This project will study the structure of multichannel communication networks; analyze new mathematical models on these networks to gain a thorough understanding of the mechanisms of content spread interacting with opinion shifts of users on these networks; and use this analysis to develop strategies to flag content in a way that is analogous to spam filters, thereby helping guide users to better navigate content on various forms of media. The results of this project will also inform and feed back directly into theory and applications of networks in many disciplines, such as by improving methodology for studying how the structure of networks influences processes (content spreading, transportation, flow of nutrients, and others) that occur on networks. This project will support 2 graduate students each year.The PI will undertake a three-year project to study opinion and content spreading in multichannel communication networks. This project has three components. First, using the new mathematical formalism of multilayer networks, the PI will analyze the structure of multichannel communication networks and develop network models of it in the form of multilayer random graphs. Second, the PI will generalize bounded-confidence models of opinion dynamics from monolayer networks to multilayer networks (this type of dynamical process has not been studied previously on multilayer networks, which one can use to encode networks with multiple types of edges or which consist of multiple subsystems), and the PI will systematically analyze the behavior of the these models through Monte Carlo simulations and regression analysis. Third, the PI will develop a model of interacting spreading of opinions (which are continuous-valued and can be in one or more dimensions) and content (which spreads through a discrete choice) by augmenting multilayer bounded-confidence models with media nodes that spread information of heterogeneous content qualities. Using this model, the PI will develop methodology to examine structural differences between the spreading properties of low-quality and high-quality content, thereby advancing the ability to filter disparate forms of content in networks. The results of this project will also inform and feed back directly into theory and applications of networks in many disciplines, such as by providing a principled method for determining the weights of interlayer edge in multilayer networks (a key open issue in applications of multilayer network analysis). The novel model of multilayer opinion dynamics will also influence the study of dynamical processes on networks more generally, advancing studies on novel phase transitions and bifurcations that arise from multilayer network architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将开展一个为期三年的项目,研究多渠道通信网络中的意见和内容传播。许多人依靠在线资源获取新闻和信息;人们在这些相互关联的媒体上传播各种内容。然而,媒体上的内容在质量和可信度方面各不相同,从高质量和经过深入研究的内容到吹捧和错误信息。PI将把在线内容的质量和观点纳入新的观点和内容传播的数学模型,对经济和社会政策等问题的在线讨论以及与其他不同观点的人的互动产生巨大影响。该项目将研究多渠道通信网络的结构;分析这些网络上的新数学模型,以深入了解内容传播与这些网络上用户的意见转变相互作用的机制;并使用这种分析来制定策略,以类似于垃圾邮件过滤器的方式标记内容,从而帮助引导用户更好地浏览各种形式的媒体内容。该项目的结果还将直接为许多学科的网络理论和应用提供信息和反馈,例如通过改进研究网络结构如何影响网络上发生的过程(内容传播,运输,营养物质流动等)的方法。 该项目每年将资助2名研究生,PI将承担一个为期三年的项目,研究多渠道通信网络中的观点和内容传播。该项目有三个组成部分。首先,使用多层网络的新数学形式,PI将分析多通道通信网络的结构,并以多层随机图的形式建立网络模型。其次,PI将把意见动态的有界置信度模型从单层网络推广到多层网络(这种类型的动态过程以前没有在多层网络上研究过,可以用来编码具有多种类型边缘或由多个子系统组成的网络),PI将通过蒙特卡洛模拟和回归分析系统地分析这些模型的行为。第三,PI将开发一个互动传播的意见(这是连续值,可以在一个或多个维度)和内容(通过离散选择传播)的模型,通过增加多层有界置信度模型与媒体节点,传播异构内容质量的信息。利用这个模型,PI将开发方法来检查低质量和高质量内容的传播特性之间的结构差异,从而提高过滤网络中不同形式内容的能力。该项目的结果还将直接为许多学科的网络理论和应用提供信息和反馈,例如通过提供确定多层网络中层间边缘权重的原则性方法(多层网络分析应用中的关键开放问题)。多层意见动力学的新模型也将影响更普遍的网络动力学过程的研究,推进对多层网络架构中出现的新相变和分叉的研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disease Detectives: Using Mathematics to Forecast the Spread of Infectious Diseases
  • DOI:
    10.3389/frym.2020.577741
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
  • 通讯作者:
    Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders spinning under the influence
  • DOI:
    10.1103/physrevresearch.2.033426
  • 发表时间:
    2020-09-16
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Feng, Michelle;Porter, Mason A.
  • 通讯作者:
    Porter, Mason A.
An adaptive bounded-confidence model of opinion dynamics on networks
网络舆论动态的自适应有限置信模型
  • DOI:
    10.1093/comnet/cnac055
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kan, Unchitta;Feng, Michelle;Porter, Mason A.
  • 通讯作者:
    Porter, Mason A.
A multilayer network model of the coevolution of the spread of a disease and competing opinions
Finding Your Way: Shortest Paths on Networks
找到你的路:网络上的最短路径
  • DOI:
    10.3389/frym.2021.631045
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rexin, Teresa;Porter, Mason A.
  • 通讯作者:
    Porter, Mason A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mason Porter其他文献

Mason Porter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mason Porter', 18)}}的其他基金

DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323343
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: MIM: Using multilayer interaction networks to predict microbiome assembly and function
合作研究:MIM:使用多层交互网络来预测微生物组的组装和功能
  • 批准号:
    2124903
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Community Structure In Multislice Networks
多切片网络中的社区结构
  • 批准号:
    EP/J001759/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Machine learning models for spatiotemporal modeling of epidemic spreading
用于流行病传播时空建模的机器学习模型
  • 批准号:
    573428-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Bayesian inference of neurodegenerative spreading models
神经退行性传播模型的贝叶斯推断
  • 批准号:
    2578358
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Spreading Speeds and Non-Spreading Solutions for Spatial Population Models with Allee Effects
具有 Allee 效应的空间种群模型的传播速度和非传播解
  • 批准号:
    1951482
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Drosophila models for tau toxicity and spreading in the central nervous system
tau 毒性和中枢神经系统扩散的果蝇模型
  • 批准号:
    9902302
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Abeta prion spreading: correlation with behavior, prion protein cofactor and effect of somatic mutations in novel animal models
Abeta朊病毒传播:与新型动物模型中行为、朊病毒蛋白辅因子和体细胞突变影响的相关性
  • 批准号:
    346939215
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
Fully three-dimensional numerical models for along-axis variations in magmatic and tectonic processes at slow-spreading mid-ocean ridges
缓慢扩张的洋中脊岩浆和构造过程沿轴变化的全三维数值模型
  • 批准号:
    1658072
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Persistence and Spreading Speeds in Multi-Species Models with A Shifting Habitat Edge
栖息地边缘变化的多物种模型中的持久性和传播速度
  • 批准号:
    1515875
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Development of damage prediction models using real-time information of influencing factors on wind damage spreading, and safety check of residential damage
利用实时风灾蔓延影响因素信息开发灾情预测模型,并对住宅灾情进行安全检查
  • 批准号:
    23510227
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Spreading Speeds and Traveling Waves in Multi-species Models of Biological Invasions
生物入侵多物种模型中的传播速度和行波分析
  • 批准号:
    0616445
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Full Size Experiments and Centrifuge Physical Models of Pile Foundations Subjected to Lateral Spreading: Comparative Study and Engineering Interpretation
合作研究:横向扩展桩基的全尺寸试验和离心机物理模型:比较研究和工程解释
  • 批准号:
    0200510
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了