Dynamics of Gas-Liquid Reactions; The Pseudo-Surface Approach

气液反应动力学;

基本信息

  • 批准号:
    EP/J002534/2
  • 负责人:
  • 金额:
    $ 114.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Chemical reactions require a collision between two chemical species, and have been widely developed and exploited in solution by synthetic chemists to make a variety of products such as plastics and drugs. Chemical interactions are studied in greater detail by physical chemists, who often work with gases in order to isolate individual molecular collisions for quantitative study. However the fundamental dynamics of dual-phase (gas-liquid) interactions are poorly understood and, to date, have received only limited attention. Gas-liquid interactions are of particular importance to a wide variety of physical processes, ranging from respiration in living organisms (which relies on uptake of oxygen from air, into the blood) to distillation, gas chromatography, and atmospheric chemistry at the surfaces of aerosol particles (where for example water droplets in air can absorb sulfuric acid to from acid rain) and the Earth's oceans. The aim of the proposed research is to improve the fundamental understanding of gas-liquid surface interactions by employing a novel experimental strategy; using a large, but volatile, flexible molecule as a simplified proxy for a liquid surface (a pseudo-surface). This will allow chemical reactions that occur at the gas-liquid interface to be studied in unprecedented detail using high resolution laser based techniques coupled with imaging methods. The imaging allows pictures to be taken of the fate of products of a chemical reaction, which will allow us to develop in-depth understanding of the mechanisms involved. This project will focus on the construction and use of a unique, compact imaging experiment that will be the first of its kind in the UK. Using the experiment we can measure the direction and speed with which any products of reactions fly. This will allow us to gain in-depth knowledge of the different possible reaction mechanisms of collisions of molecules with pseudo-surfaces. The simplest pathway is a single collision reaction, called a direct mechanism. Some colliding atoms or molecules are trapped on the surface, however, undergoing multiple collisions before reacting (a so called trapping-desorption mechanism), and in extreme cases the pseudo-surface adsorbs the other reagent. The football / apple tree analogy is helpful here: imagine if you kick a football into an apple tree, it could come out straight away, bouncing off a branch, bringing an apple with it (direct mechanism), or it could get temporarily caught bouncing from branch to branch before leaving with an apple (trapping-desorption), or it could become wedged between the branches. The work proposed here will study the football and apple tree problem in detail and use it as a model to investigate the football and orchard problem (the real liquid, where lots of identical molecules (apple trees) make up the surface). This analogy can be extended to use rugby and other shaped balls to represent different incoming atoms/molecules/radicals that we intend to study. The research will have a profound impact on the understanding of surface interactions, and will be of benefit to a broad community of researchers in Chemistry, Physics, Engineering, and ultimately Life Sciences, with interest in gas-liquid interfaces.
化学反应需要两种化学物种之间的碰撞,并已被合成化学家广泛开发和利用,以制造各种产品,如塑料和药物。物理化学家更详细地研究化学相互作用,他们经常与气体合作,以分离单个分子碰撞进行定量研究。然而,人们对双相(气-液)相互作用的基本动力学知之甚少,到目前为止,只得到了有限的关注。气液相互作用对于各种各样的物理过程特别重要,从生物体的呼吸(依赖于从空气中吸收氧气进入血液)到蒸馏、气相色谱和气溶胶颗粒(例如空气中的水滴可以吸收硫酸以产生酸雨)和地球海洋表面的大气化学。这项研究的目的是通过采用一种新的实验策略来提高对气-液表面相互作用的基本理解;使用一个大的但易挥发的柔性分子作为液体表面(拟表面)的简化代理。这将使发生在气液界面上的化学反应能够利用基于高分辨率激光的技术和成像方法进行前所未有的详细研究。这种成像可以拍摄化学反应产物的命运照片,这将使我们能够深入了解所涉及的机制。该项目将专注于建造和使用一种独特的、紧凑的成像实验,这将是英国首个此类实验。利用这个实验,我们可以测量任何反应产物的飞行方向和速度。这将使我们能够深入了解分子与伪表面碰撞的不同可能的反应机制。最简单的途径是单一的碰撞反应,称为直接机制。然而,一些相互碰撞的原子或分子被捕获在表面上,在反应之前经历多次碰撞(所谓的捕获-解吸机制),在极端情况下,伪表面吸附另一种试剂。足球和苹果树的类比在这里很有帮助:想象一下,如果你把一个足球踢到苹果树上,它可能会立刻出来,从树枝上弹跳,带着一个苹果(直接机械),或者它可能会暂时在树枝之间弹跳,然后带着苹果离开(陷阱-解吸),或者它可能会卡在树枝之间。这里提出的工作将详细研究足球和苹果树问题,并将其作为模型来研究足球和果园问题(真正的液体,其中许多相同的分子(苹果树)组成表面)。这个类比可以扩展到使用橄榄球和其他形状的球来表示我们打算研究的不同的入射原子/分子/自由基。这项研究将对表面相互作用的理解产生深远的影响,并将对化学、物理、工程以及最终对气液界面感兴趣的广泛的生命科学研究人员有所裨益。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of photodissociation of XeF2 in organic solvents.
XeF2 在有机溶剂中的光解动力学。
  • DOI:
    10.1039/c4cp01854k
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dunning GT
  • 通讯作者:
    Dunning GT
Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2.
甲基自由基与 H2 和 D2 的旋转非弹性散射的微分和积分截面。
Rotationally inelastic scattering of CD3 and CH3 with He: comparison of velocity map-imaging data with quantum scattering calculations
CD3 和 CH3 与 He 的旋转非弹性散射:速度图成像数据与量子散射计算的比较
  • DOI:
    10.1039/c3sc52002a
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Tkác O
  • 通讯作者:
    Tkác O
Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.
  • DOI:
    10.1021/acs.jpca.5b05624
  • 发表时间:
    2015-12-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dunning GT;Preston TJ;Greaves SJ;Greetham GM;Clark IP;Orr-Ewing AJ
  • 通讯作者:
    Orr-Ewing AJ
Velocity Map Imaging the Scattering Plane of Gas Surface Collisions
气体表面碰撞散射平面的速度图成像
  • DOI:
    10.48550/arxiv.1606.03222
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hadden D
  • 通讯作者:
    Hadden D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Greaves其他文献

Stuart Greaves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Greaves', 18)}}的其他基金

Dynamics of Gas-Liquid Reactions; The Pseudo-Surface Approach
气液反应动力学;
  • 批准号:
    EP/J002534/1
  • 财政年份:
    2011
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Fellowship

相似国自然基金

LncRNA GAS5竞争性结合外泌体miR-21-5p靶向TNFAIP3调控巨噬细胞极化促进肩袖腱骨界面修复作用的机制研究
  • 批准号:
    2025JJ80589
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内源性SO2通过抑制DNMT1甲基化LncRNA GAS5拮抗硫酸吲哚酚诱发的心肌细胞焦亡及心肌纤维化
  • 批准号:
    2025JJ50606
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
骨肉瘤干细胞通过分泌GAS6诱导肌成纤 维细胞促进免疫逃逸的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
lncRNA Gas5调控M1巨噬细胞极化在糖尿病肾病肾纤维化中的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5竞争性结合miR-21/PTEN轴靶向乳酸脱氢酶调控子宫内膜异位症糖酵解
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5调控RUNX3/CD80/CD28轴促进甲状腺癌免疫激活的分子机制研究
  • 批准号:
    2025JJ70535
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ESM1抑制GAS5影响PTEN/PI3K/Akt信号通路促进卵巢癌细胞顺铂耐药
  • 批准号:
    2025JJ50543
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于TAZ/miR-942-3P/GAS1通路探讨补肾活血方介导子宫内膜上皮细胞糖代谢重编程对宫腔粘连的作用机制研究
  • 批准号:
    2025JJ80912
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Gas6/Axl信号轴调控铁死亡探索bFGF@adExos/GelMA复合水凝胶促脊髓损伤修复的研究
  • 批准号:
    MS25H090029
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Elucidation and control of mutual dynamics of bulk flow-gas-liquid surface tension gradient associated with high-speed elongation behavior
与高速伸长行为相关的散装流-气-液表面张力梯度的相互动力学的阐明和控制
  • 批准号:
    23K13251
  • 财政年份:
    2023
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Innovative technology for controlled synthesis of reactive species by elucidating spatio-temporal dynamics of plasma gas-liquid interfacial reactions
通过阐明等离子体气液界面反应的时空动力学来控制活性物质合成的创新技术
  • 批准号:
    22H04947
  • 财政年份:
    2022
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Dynamics of interfacial biomolecules captured by liquid-gas transition
液-气转变捕获的界面生物分子的动力学
  • 批准号:
    21K03495
  • 财政年份:
    2021
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Femtosecond Time-Resolved Studies of the First 200 fs Photochemical and Photophysical Relaxation Dynamics in the Gas and Liquid Phases
气相和液相中前 200 fs 光化学和光物理弛豫动力学的飞秒时间分辨研究
  • 批准号:
    2102619
  • 财政年份:
    2021
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Standard Grant
Elucidation of non-equilibrium phase change at gas-liquid interface mechanism for mixture gas and its application to molecular multi-phase fluid dynamics
混合气体气液界面非平衡相变机理的阐明及其在分子多相流体动力学中的应用
  • 批准号:
    20K04277
  • 财政年份:
    2020
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation and Transport Dynamics of High Speed Gas-Liquid Droplet Microfluidics
高速气液液滴微流控的形成和传输动力学
  • 批准号:
    1805244
  • 财政年份:
    2018
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Standard Grant
Spectroscopy and Dynamics at the Gas-Liquid Interface (SDynG-LI)
气液界面的光谱学和动力学 (SDynG-LI)
  • 批准号:
    340714732
  • 财政年份:
    2017
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Research Grants
Reactive Scattering Dynamics at the Gas-Liquid Interface: Bridging the Gap between the Gas-Phase and Solution
气液界面的反应散射动力学:弥合气相和溶液之间的间隙
  • 批准号:
    EP/M022129/1
  • 财政年份:
    2015
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Research Grant
Reactive Scattering Dynamics at the Gas-Liquid Interface: Bridging the Gap between the Gas-Phase and Solution
气液界面的反应散射动力学:弥合气相和溶液之间的间隙
  • 批准号:
    EP/M021823/1
  • 财政年份:
    2015
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Research Grant
Molecular dynamics simulation of gas liquid nucleation in aqueous systems.
水体系中气液成核的分子动力学模拟。
  • 批准号:
    261106610
  • 财政年份:
    2015
  • 资助金额:
    $ 114.21万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了