The Human Brain as a Complex System: Investigating the Relationship between Structural and Functional Networks in the Thalamocortical System

人脑作为一个复杂的系统:研究丘脑皮质系统结构和功能网络之间的关系

基本信息

  • 批准号:
    EP/J002909/1
  • 负责人:
  • 金额:
    $ 74.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

The majority of brain functions are performed not be single regions but by the combined, coordinated activity of networks distributed throughout the brain. Several neurological and psychiatric disorders may be caused by a breakdown of the ability of these regions to communicate effectively. While several different methods have been developed to understand how the component regions, or nodes, of a network interact, there is no comprehensive framework for combining the information from different techniques to give an overall picture of network function. Without such a framework, advances in neuroimaging techniques which allow the characterisation of anatomical and functional connections cannot be fully exploited. The purpose of this project is to develop such a framework, making use of intrinsic brain activity which can define well characterised model networks, thereby providing a natural validation of the results. The nodes of brain networks can be identified using three different definitions of connectivity between regions. Structural connectivity (SC) describes the anatomical connections between regions, functional connectivity (FC) identifies whether the activity of two regions increases and decreases coherently, while effective connectivity (EC) attempts to describe the brain not in terms of EEG or MRI signals, but the underlying neuronal populations which produce them. Each of these measures can be estimated using multiple different data acquisition and analysis techniques. For example, SC can be determined from diffusion tensor imaging (DTI) MRI scans, which are sensitive to the diffusion of water in white matter tracts, or from measurements of cortical thickness. Similarly, FC can be calculated from electroencephalography (EEG) or functional MRI (fMRI) measurements. Understanding how these different measures of connectivity are related, and how measurements of human brain function and structure can be combined to produce a unified picture, is not straightforward. Few studies have acquired the high quality data with multiple techniques that is required for such an undertaking. A further complication is that of defining model networks which are of sufficient complexity to provide a realistic test of any methodological developments, while being sufficiently well-characterised to allow developments to be validated. We will overcome this issue in a novel way by building on decades of invasive neurophysiological experiments which have characterised the networks responsible for the generation of thalamocortical oscillations (TCO), electrophysiological events that are generated by interactions between cortical and thalamic network nodes. TCO can be hallmarks of normal brain function (alpha rhythm, sleep spindles and K-complexes), or pathophysiology, of which the most obvious are generalised spike-wave discharges, characteristic of generalised epilepsy. This project will use the networks defined by TCO to investigate the relationships between different measures of brain connectivity, developing and optimising new methods to combine and fully exploit all of the information that can be extracted from non-invasive brain imaging data. Modelling and analysis of these networks will be based on graph theoretical approaches. By using these restricted and well-characterised model networks, we will be able to validate our work against previous neurophysiological data, and provide general tools for the neuroimaging community. In addition, we will shed light on the generation of normal and pathological brain activity and how this arises from network connectivity patterns.
大脑的大部分功能不是由单个区域执行的,而是由分布在整个大脑中的网络的联合协调活动执行的。一些神经和精神疾病可能是由这些区域有效沟通能力的崩溃引起的。虽然已经开发了几种不同的方法来理解网络的组成区域或节点如何相互作用,但还没有一个综合的框架来结合来自不同技术的信息来全面了解网络功能。如果没有这样一个框架,神经影像学技术的进步,使解剖和功能连接的特点不能充分利用。该项目的目的是开发这样一个框架,利用内在的大脑活动,可以定义良好的特征模型网络,从而提供结果的自然验证。大脑网络的节点可以使用三种不同的区域间连接定义来识别。结构连接(SC)描述了区域之间的解剖学连接,功能连接(FC)确定了两个区域的活动是否一致地增加和减少,而有效连接(EC)试图描述大脑,而不是EEG或MRI信号,而是产生它们的潜在神经元群体。这些测量中的每一个都可以使用多种不同的数据采集和分析技术来估计。例如,SC可以从扩散张量成像(DTI)MRI扫描(其对水在白色物质束中的扩散敏感)或从皮质厚度的测量来确定。类似地,FC可以从脑电图(EEG)或功能性MRI(fMRI)测量中计算。了解这些不同的连通性测量是如何相互关联的,以及如何将人类大脑功能和结构的测量结合起来以产生一个统一的图像,并不简单。很少有研究已经获得了高质量的数据与多种技术,这是需要这样一个事业。另一个复杂的问题是定义模型网络,这些网络具有足够的复杂性,可以对任何方法的发展进行现实的测试,同时具有足够的特征,可以验证发展。我们将以一种新的方式克服这个问题,建立在几十年的侵入性神经生理学实验,其特征是负责产生丘脑皮层振荡(TCO)的网络,皮层和丘脑网络节点之间的相互作用产生的电生理事件。TCO可以是正常脑功能(α节律、睡眠纺锤波和K复合体)或病理生理学的标志,其中最明显的是全身性癫痫的特征性全身性棘波放电。 该项目将使用TCO定义的网络来研究大脑连接的不同测量之间的关系,开发和优化新方法,以联合收割机并充分利用可以从非侵入性大脑成像数据中提取的所有信息。这些网络的建模和分析将基于图论方法。通过使用这些受限制且特征良好的模型网络,我们将能够根据以前的神经生理学数据验证我们的工作,并为神经成像社区提供通用工具。此外,我们将阐明正常和病理性大脑活动的产生,以及这是如何从网络连接模式中产生的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal organisation of the brain's intrinsic motor network: The relationship with circadian phenotype and motor performance.
  • DOI:
    10.1016/j.neuroimage.2021.117840
  • 发表时间:
    2021-05-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Facer-Childs ER;de Campos BM;Middleton B;Skene DJ;Bagshaw AP
  • 通讯作者:
    Bagshaw AP
Thalamic functional connectivity and its association with behavioral performance in older age.
  • DOI:
    10.1002/brb3.943
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Goldstone A;Mayhew SD;Hale JR;Wilson RS;Bagshaw AP
  • 通讯作者:
    Bagshaw AP
Comparison of functional thalamic segmentation from seed-based analysis and ICA
  • DOI:
    10.1016/j.neuroimage.2015.04.027
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Hale, Joanne R.;Mayhew, Stephen D.;Bagshaw, Andrew P.
  • 通讯作者:
    Bagshaw, Andrew P.
Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy.
  • DOI:
    10.1016/j.nicl.2017.07.008
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bagshaw AP;Hale JR;Campos BM;Rollings DT;Wilson RS;Alvim MKM;Coan AC;Cendes F
  • 通讯作者:
    Cendes F
Gender Specific Re-organization of Resting-State Networks in Older Age.
  • DOI:
    10.3389/fnagi.2016.00285
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Goldstone A;Mayhew SD;Przezdzik I;Wilson RS;Hale JR;Bagshaw AP
  • 通讯作者:
    Bagshaw AP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Bagshaw其他文献

Concordance of objective and subjective measures of sleep in children with neurodevelopmental conditions: A systematic review and meta-analysis
神经发育状况儿童睡眠的客观和主观测量的一致性:系统综述和荟萃分析
  • DOI:
    10.1016/j.smrv.2023.101814
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Rory O'Sullivan;Stacey Bissell;Anna Hamilton;Andrew Bagshaw;Caroline Richards
  • 通讯作者:
    Caroline Richards

Andrew Bagshaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Bagshaw', 18)}}的其他基金

Conserved thalamic mechanisms for attention and sleep
注意力和睡眠的保守丘脑机制
  • 批准号:
    BB/X013634/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Research Grant
Development of Single Trial EEG-fMRI: Investigations of Dynamic Brain Function at High Temporal and Spatial Resolution
单次试验 EEG-fMRI 的开发:高时空分辨率下的动态脑功能研究
  • 批准号:
    EP/F023057/1
  • 财政年份:
    2008
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Research Grant

相似国自然基金

Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integration and interoperability of complex data and tissues from the human brain
人脑复杂数据和组织的集成和互操作性
  • 批准号:
    10789107
  • 财政年份:
    2023
  • 资助金额:
    $ 74.96万
  • 项目类别:
Expanding magnitude-based MRI relaxometry of human brain by using the complex signal for high resolution concomitant multiparametric and cerebrovascular mapping
通过使用复杂信号进行高分辨率伴随多参数和脑血管绘图,扩展基于幅度的人脑 MRI 松弛测量
  • 批准号:
    RGPIN-2018-05069
  • 财政年份:
    2021
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding magnitude-based MRI relaxometry of human brain by using the complex signal for high resolution concomitant multiparametric and cerebrovascular mapping
通过使用复杂信号进行高分辨率伴随多参数和脑血管绘图,扩展基于幅度的人脑 MRI 松弛测量
  • 批准号:
    RGPIN-2018-05069
  • 财政年份:
    2020
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Discovery Grants Program - Individual
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10697355
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
Mapping the structural and functional organisation of the human brain via in vivo neuroimaging and complex network analysis
通过体内神经成像和复杂网络分析绘制人脑的结构和功能组织
  • 批准号:
    2267801
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Studentship
Expanding magnitude-based MRI relaxometry of human brain by using the complex signal for high resolution concomitant multiparametric and cerebrovascular mapping
通过使用复杂信号进行高分辨率伴随多参数和脑血管绘图,扩展基于幅度的人脑 MRI 松弛测量
  • 批准号:
    RGPIN-2018-05069
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
    Discovery Grants Program - Individual
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10813318
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10201600
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10471780
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10020974
  • 财政年份:
    2019
  • 资助金额:
    $ 74.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了