A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
基本信息
- 批准号:10813318
- 负责人:
- 金额:$ 18.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-21 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAuditory areaBrainBrain imagingBrain regionCalibrationCerebellumChildCommunicationCompensationComplexComputer softwareCortical ColumnDevelopmentDiscriminationElectroencephalographyElectronicsEnvironmentEpilepsyEvaluationFrequenciesFunctional Magnetic Resonance ImagingGoalsGrantHeadHelmetHumanImageIndividualLasersLocationMagnetismMagnetoencephalographyMapsMeasurementMeasuresMethodsModelingMonitorMorphologic artifactsMovementNeuronsNeurosciencesNoiseOpticsPerformancePersonsPhysicsPositioning AttributePremature InfantPumpResolutionRestSaccadesSamplingScalp structureShapesSignal TransductionSomatosensory CortexSourceStructureSubject HeadingsSupport SystemSystemTechniquesTechnologyTemperatureTimeUnited States National Institutes of HealthValidationVisual Cortexadvanced systemagedclinical applicationcortex mappingcostcraniumcryogenicsdata acquisitiondensitydesignexperimental studyhuman subjectimaging approachimaging modalityimaging systemimprovedmagnetic fieldmillimetermillisecondneuralneural circuitneuroimagingneuronal circuitryoperationprototypescale upsensorsignal processingsimulationspatiotemporalsuperconducting quantum interference devicetemporal measurementtoolusabilityvector
项目摘要
PROJECT SUMMARY/ABSTRACT
To develop maps at multiple scales of neuronal circuits in the human brain and study the brain dynamics, there
is a need for non-invasive functional brain imaging with high spatiotemporal resolution operating in natural
environments. Among non-invasive functional brain imaging methods, magnetoencephalography (MEG) is the
only technology that can map cortical activity down to millimeter spatial resolution with millisecond time
resolution. Current cryogenic MEG systems employ superconducting quantum interference device (SQUID)
magnetometers. The cryogenic operation requires sensor arrays that are rigid and fixed in a helmet, and the
helmet size is optimized to fit the largest adult heads. The rigid helmet limits source-to-sensor distances to >3
cm which compromises the maximum achievable signal-to-noise ratio (SNR) and hence spatial resolution.
Furthermore, due to their design, these SQUID-based MEG systems are costly and impractical for experiments
in natural environments. Recent simulation studies have shown that on-scalp MEG can maximize SNR and
achieve spatial resolution approaching 1 mm. Optically pumped magnetometers (OPMs) are a valid candidate
for MEG sensors, as they operate above room temperature, and the sensor layout can be conformal to the
scalp. The overall objective of this project is to develop a wearable, conformable, full-head coverage, 108-
channel, OPM-based MEG system with unprecedented spatial resolution approaching 1 mm. The first Aim will
develop the whole-cortex 108-channel OPM array along with the supporting systems (optical, electronic,
software, etc.). The OPM MEG will be installed in a magnetically shielded room so that the array can be worn
and move with the subject, enabling more naturalistic study paradigms. The second Aim will leverage the high-
frequency spatial features available to the on-scalp OPMs to enhance the spatial resolution of the MEG
system. Given unique subjects’ head shapes, adaptive sampling of the magnetic topography (image) is
essential to maximize the captured spatial frequency. Hence, information-theoretic analysis will be used to
maximize the spatial resolution by optimizing the sensors locations. With the array being reconfigurable, rapid
calibration techniques will be developed to determine the position of each OPM for each subject. To eliminate
external magnetic noise and compensate for movement-induced distortion, physics-based models will be
employed. The final Aim cross validates the performance metrics of the new OPM MEG system with a
commercial SQUID system. By measuring retinotopy in the visual cortex, spatial localization between the MEG
systems will be compared. By stimulating cerebellar activity, it will be studied if the conformal OPM array can
better capture activity in this difficult-to-study region of the brain. Finally, by measuring resting-state MEG,
intrinsic network connectivity in the human brain will be captured. This project will provide a whole-head OPM
array that improves MEG measurements for people of all head sizes (from premature infants to the largest
adults) and enable new experimental paradigms with a wearable array operating in semi-natural settings.
项目总结/文摘
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of spatial sampling on the resolution of the magnetostatic inverse problem.
空间采样对静磁反问题分辨率的影响。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nurminen,Jussi;Zhdanov,Andrey;Yeo,WanJin;Iivanainen,Joonas;Stephen,Julia;Borna,Amir;McKay,Jim;Schwindt,PeterDD;Taulu,Samu
- 通讯作者:Taulu,Samu
Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils.
- DOI:10.3390/s22083059
- 发表时间:2022-04-15
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter D. D. Schwindt其他文献
Peter D. D. Schwindt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter D. D. Schwindt', 18)}}的其他基金
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10697355 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10201600 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10471780 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
- 批准号:
10020974 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8296381 - 财政年份:2012
- 资助金额:
$ 18.47万 - 项目类别:
Improved Spatial Resolution in Magnetoencephalography with an Optically Pumped Magnetometer Array
使用光泵磁力计阵列提高脑磁图的空间分辨率
- 批准号:
9552418 - 财政年份:2012
- 资助金额:
$ 18.47万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8471703 - 财政年份:2012
- 资助金额:
$ 18.47万 - 项目类别:
Improved Spatial Resolution in Magnetoencephalography with an Optically Pumped Magnetometer Array
使用光泵磁力计阵列提高脑磁图的空间分辨率
- 批准号:
9789869 - 财政年份:2012
- 资助金额:
$ 18.47万 - 项目类别:
A Cryogen-Free, Low-Cost Atomic Magnetometer Array for Magnetoencephalography
用于脑磁图的无制冷剂、低成本原子磁力计阵列
- 批准号:
8666751 - 财政年份:2012
- 资助金额:
$ 18.47万 - 项目类别: