Hyperbolic Dynamics and Noncommutative Geometry

双曲动力学和非交换几何

基本信息

  • 批准号:
    EP/J006580/1
  • 负责人:
  • 金额:
    $ 35.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

In the 1980s, Alain Connes, who had already won the Fields Medal for his work on C*-algebras, developed a new branch of mathematics called noncommutative geometry. Partly inspired by the description of subatomic phenomena given by quantum mechanics, the theory aimed to describe a wide variety of geometric objects in algebraic terms, where "points" are replaced by "operators". Connes was able to extend most of the tools of classical differential geometry to this setting but the theory is sufficiently flexible to allow a description of less regular objects: badly behaved quotient spaces, spaces of foliations and, particularly relevant to this application, fractal sets. Indeed, "fractal noncommutative geometry" has become a very active field in its own right.A very recent development has been the combination of fractal noncommutative geometry with the theory of hyperbolic dynamical systems. The latter are the prototypical examples of chaotic dynamical systems and are characterized by a local decomposition into exponentially expanding and contracting directions. They have a rich orbit structure and many important characteristics, for example invariant measures, can be recovered from averaging over families of orbits. Such families of orbits can also be used to construct to objects required for a noncommutative description of the geometry of the dynamical system and this is an aspect we intend to exploit.Our principle objective is to describe the invariant set of a hyperbolic dynamical system, together with an important class of invariant measures, called Gibbs measures, in terms of noncommutative geometry or, more technically, in terms of an object called a spectral triple. This includes an operator, called a Dirac operator, which provides the analogue of differentiation. We also aim to develop this theory for the limit sets of Kleinian groups, which can appear as intricate fractal patterns on the the two dimensional sphere.We further aim to develop a noncommutative, or spectral, theory of dynamics and Kleinian group actions. To this end, we will study spectral metric spaces associated to algebraic objects coming from the simplest Kleinian groups, namely Schottky groups. In these examples, the limit set is a Cantor set, one of the most familiar examples of fractal set. Spectral triples assiciated to Cantor sets have also been studied recently by Bellisard and Pearson and they were led to define a Laplace-Beltrami operator in this setting. We aim to extend this work to a wider setting.Finally, we aim to develop a mutifractal analysis -- the study of the fine fractal structure of dynamical systems -- in terms of noncommutative geometry.
20世纪80年代,已经因在C*-代数上的工作而获得菲尔兹奖的阿兰·康尼斯发展了一个新的数学分支,称为非对易几何。该理论的部分灵感来自于量子力学对亚原子现象的描述,该理论旨在用代数术语描述各种各样的几何对象,其中“点”被“算符”取代。康纳斯能够将经典微分几何的大多数工具扩展到这种设置,但该理论足够灵活,可以描述不太规则的对象:行为糟糕的商空间、叶空间,特别是与此应用相关的分形集。事实上,“分形非对易几何”本身已经成为一个非常活跃的领域。最新的发展是将分形非对易几何与双曲动力系统理论相结合。后者是混沌动力系统的典型例子,其特征是局部分解成指数扩张和收缩方向。它们具有丰富的轨道结构和许多重要的特征,例如不变度量,可以通过对轨道族进行平均来恢复。这样的轨道族也可以用来构造动力学系统几何的非对易描述所需的对象,这是我们打算利用的一个方面。我们的主要目标是描述双曲动力系统的不变集,以及一类重要的不变度量,称为Gibbs测度,用非对易几何或更严格地说,用称为谱三元组的对象来描述。这包括一个称为狄拉克算符的运算符,它提供了类似的微分。我们的目的也是为了将这一理论推广到Klein群的极限集上,它可以表现为二维球面上的复杂的分形图案。我们进一步的目标是发展一种非对易的或谱的动力学理论和Kleian群作用。为此,我们将研究与来自最简单的Klein群,即肖特基群的代数对象有关的谱度量空间。在这些示例中,极限集是Cantor集,这是最常见的分形集之一。Bellisard和Pearson最近也研究了与Cantor集相关的谱三元组,并在此背景下定义了Laplace-Beltrami算子。我们的目标是将这项工作扩展到更广泛的背景下。最后,我们的目标是在非对易几何的基础上发展多重分形分析--研究动力系统的精细分形结构。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPECTRAL TRIPLES AND FINITE SUMMABILITY ON CUNTZ-KRIEGER ALGEBRAS
CUNTZ-KRIEGER代数上的谱三元组和有限可求性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Goffeng Magnus
  • 通讯作者:
    Goffeng Magnus
LENGTH ASYMPTOTICS IN HIGHER TEICHMULLER THEORY
高等TEICHMULLER理论中的长度渐近
Correlations of Length Spectra for Negatively Curved Manifolds
  • DOI:
    10.1007/s00220-012-1644-3
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    M. Pollicott;Richard Sharp
  • 通讯作者:
    M. Pollicott;Richard Sharp
Dense domains, symmetric operators and spectral triples
密集域、对称算子和谱三元组
ERGODIC THEOREMS FOR ACTIONS OF HYPERBOLIC GROUPS
双曲群作用的遍历定理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Sharp其他文献

Higher-level techniques for hardware description and synthesis
硬件描述和综合的高级技术
Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050
1900年至2050年陆地生物多样性和生态系统服务的全球趋势和情景
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Henrique M. Pereira;Inês S. Martins;Isabel M. D. Rosa;HyeJin Kim;Paul Leadley;Alexander Popp;D. V. van Vuuren;G. Hurtt;Luise Quoss;A. Arneth;D. Baisero;M. Bakkenes;R. Chaplin‐Kramer;L. Chini;Moreno Di Marco;Simon Ferrier;S. Fujimori;Carlos A. Guerra;M. Harfoot;Thomas D. Harwood;T. Hasegawa;V. Haverd;P. Havlík;Stefanie Hellweg;J. Hilbers;S. Hill;A. Hirata;Andrew J. Hoskins;Florian Humpenöder;J. Janse;Walter Jetz;Justin A Johnson;A. Krause;D. Leclère;Tetsuya Matsui;Johan R. Meijer;C. Merow;M. Obersteiner;Haruka Ohashi;Adriana De Palma;B. Poulter;Andy Purvis;B. Quesada;C. Rondinini;A. Schipper;J. Settele;Richard Sharp;E. Stehfest;B. Strassburg;Kiyoshi Takahashi;Matthew V. Talluto;Wilfried Thuiller;N. Titeux;Piero Visconti;Christopher Ware;Florian Wolf;Rob Alkemade
  • 通讯作者:
    Rob Alkemade
Poincaré series and zeta functions for surface group actions on ℝ-trees
ℝ-树上表面群作用的庞加莱级数和 zeta 函数
  • DOI:
    10.1007/pl00004654
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    M. Pollicott;Richard Sharp
  • 通讯作者:
    Richard Sharp
Statistics of multipliers for hyperbolic rational maps
双曲有理图乘数统计
Orbit counting in conjugacy classes for free groups acting on trees
作用于树的自由群的共轭类中的轨道计数
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    George Kenison;Richard Sharp
  • 通讯作者:
    Richard Sharp

Richard Sharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Sharp', 18)}}的其他基金

Workshop - Thermodynamic Formalism: Ergodic Theory and Geometry
研讨会 - 热力学形式主义:遍历理论和几何
  • 批准号:
    EP/S020969/1
  • 财政年份:
    2019
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Critical Exponents and Thermodynamic Formalism on Geometrically Infinite Spaces
几何无限空间上的临界指数和热力学形式主义
  • 批准号:
    EP/P028373/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Hyperbolic Dynamics and Noncommutative Geometry
双曲动力学和非交换几何
  • 批准号:
    EP/J006580/2
  • 财政年份:
    2012
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Workshop: Ergodic Theory and Geometry
研讨会:遍历理论与几何
  • 批准号:
    EP/F037805/1
  • 财政年份:
    2008
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Ionospheric Acceleration Mechanisms
电离层加速机制
  • 批准号:
    8317710
  • 财政年份:
    1984
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Ionospheric Acceleration Mechanisms
电离层加速机制
  • 批准号:
    8119340
  • 财政年份:
    1982
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Ionospheric Acceleration Mechanisms
电离层加速机制
  • 批准号:
    7911174
  • 财政年份:
    1979
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Ionospheric Acceleration Mechanisms
电离层加速机制
  • 批准号:
    7709853
  • 财政年份:
    1977
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Analysis of Satellite Data on Auroral Helium Ions
极光氦离子卫星数据分析
  • 批准号:
    7421834
  • 财政年份:
    1975
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了