Hyperbolic Dynamics and Noncommutative Geometry
双曲动力学和非交换几何
基本信息
- 批准号:EP/J006580/2
- 负责人:
- 金额:$ 30.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 1980s, Alain Connes, who had already won the Fields Medal for his work on C*-algebras, developed a new branch of mathematics called noncommutative geometry. Partly inspired by the description of subatomic phenomena given by quantum mechanics, the theory aimed to describe a wide variety of geometric objects in algebraic terms, where "points" are replaced by "operators". Connes was able to extend most of the tools of classical differential geometry to this setting but the theory is sufficiently flexible to allow a description of less regular objects: badly behaved quotient spaces, spaces of foliations and, particularly relevant to this application, fractal sets. Indeed, "fractal noncommutative geometry" has become a very active field in its own right.A very recent development has been the combination of fractal noncommutative geometry with the theory of hyperbolic dynamical systems. The latter are the prototypical examples of chaotic dynamical systems and are characterized by a local decomposition into exponentially expanding and contracting directions. They have a rich orbit structure and many important characteristics, for example invariant measures, can be recovered from averaging over families of orbits. Such families of orbits can also be used to construct to objects required for a noncommutative description of the geometry of the dynamical system and this is an aspect we intend to exploit.Our principle objective is to describe the invariant set of a hyperbolic dynamical system, together with an important class of invariant measures, called Gibbs measures, in terms of noncommutative geometry or, more technically, in terms of an object called a spectral triple. This includes an operator, called a Dirac operator, which provides the analogue of differentiation. We also aim to develop this theory for the limit sets of Kleinian groups, which can appear as intricate fractal patterns on the the two dimensional sphere.We further aim to develop a noncommutative, or spectral, theory of dynamics and Kleinian group actions. To this end, we will study spectral metric spaces associated to algebraic objects coming from the simplest Kleinian groups, namely Schottky groups. In these examples, the limit set is a Cantor set, one of the most familiar examples of fractal set. Spectral triples assiciated to Cantor sets have also been studied recently by Bellisard and Pearson and they were led to define a Laplace-Beltrami operator in this setting. We aim to extend this work to a wider setting.Finally, we aim to develop a mutifractal analysis -- the study of the fine fractal structure of dynamical systems -- in terms of noncommutative geometry.
在20世纪80年代,阿兰·康纳斯(Alain Connes)已经因为他在C*-代数方面的工作获得了菲尔兹奖,他发展了一个新的数学分支,称为非交换几何。部分受到量子力学对亚原子现象描述的启发,该理论旨在用代数术语描述各种几何对象,其中“点”被“算子”取代。康纳斯是能够扩大大多数工具的经典微分几何这一设置,但该理论是足够灵活的,以允许描述不太经常的对象:表现不佳的商空间,空间的foliations和,特别是有关本申请,分形集。事实上,“分形非对易几何”本身已经成为一个非常活跃的领域。最近的发展是分形非对易几何与双曲动力系统理论的结合。后者是混沌动力系统的典型例子,其特征在于局部分解成指数膨胀和收缩方向。它们有丰富的轨道结构和许多重要的特征,例如不变测度,可以通过对轨道族进行平均来恢复。这类轨道族也可以用来构造动力系统几何的非对易描述所需的对象,这是我们打算利用的一个方面。我们的主要目标是描述双曲动力系统的不变集,以及一类重要的不变测度,称为吉布斯测度,在非对易几何方面,或者更技术上,用一个叫做光谱三元组的物体来表示。这包括一个称为狄拉克算子的算子,它提供了微分的模拟。我们的目标也是发展这一理论的极限集的Kleinian群,这可能会出现在复杂的分形图案的二维sphere。我们进一步的目标是发展一个非交换的,或频谱,理论的动力学和Kleinian群行动。为此,我们将研究与来自最简单的Kleinian群,即肖特基群的代数对象相关的谱度量空间。在这些例子中,极限集是康托集,分形集最常见的例子之一。谱三元组关联到康托集也已研究最近由Bellisard和皮尔逊,他们导致定义一个Laplace-Beltrami算子在这种设置。我们的目标是将这项工作扩展到更广泛的setting.Finally,我们的目标是开发一个多重分形分析-动力系统的精细分形结构的研究-在非交换几何。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gauge theory for spectral triples and the unbounded Kasparov product
谱三元组的规范理论和无界卡斯帕罗夫积
- DOI:10.4171/jncg/230
- 发表时间:2016
- 期刊:
- 影响因子:0.9
- 作者:Brain S
- 通讯作者:Brain S
SPECTRAL TRIPLES AND FINITE SUMMABILITY ON CUNTZ-KRIEGER ALGEBRAS
CUNTZ-KRIEGER代数上的谱三元组和有限可求性
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0.9
- 作者:Goffeng Magnus
- 通讯作者:Goffeng Magnus
Shift tail equivalence and an unbounded representative of the Cuntz-Pimsner extension
移尾等价和 Cuntz-Pimsner 扩展的无界代表
- DOI:10.48550/arxiv.1512.03455
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Goffeng M
- 通讯作者:Goffeng M
The bordism group of unbounded KK-cycles
无界 KK 循环的 Bordism 群
- DOI:10.1142/s1793525318500012
- 发表时间:2018
- 期刊:
- 影响因子:0.8
- 作者:Deeley R
- 通讯作者:Deeley R
Wieler solenoids, Cuntz-Pimsner algebras and K-theory
Wieler 螺线管、Cuntz-Pimsner 代数和 K 理论
- DOI:10.48550/arxiv.1606.05449
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Deeley R
- 通讯作者:Deeley R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Sharp其他文献
Higher-level techniques for hardware description and synthesis
硬件描述和综合的高级技术
- DOI:
10.1007/s10009-002-0086-1 - 发表时间:
2003 - 期刊:
- 影响因子:1.5
- 作者:
A. Mycroft;Richard Sharp - 通讯作者:
Richard Sharp
Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050
1900年至2050年陆地生物多样性和生态系统服务的全球趋势和情景
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Henrique M. Pereira;Inês S. Martins;Isabel M. D. Rosa;HyeJin Kim;Paul Leadley;Alexander Popp;D. V. van Vuuren;G. Hurtt;Luise Quoss;A. Arneth;D. Baisero;M. Bakkenes;R. Chaplin‐Kramer;L. Chini;Moreno Di Marco;Simon Ferrier;S. Fujimori;Carlos A. Guerra;M. Harfoot;Thomas D. Harwood;T. Hasegawa;V. Haverd;P. Havlík;Stefanie Hellweg;J. Hilbers;S. Hill;A. Hirata;Andrew J. Hoskins;Florian Humpenöder;J. Janse;Walter Jetz;Justin A Johnson;A. Krause;D. Leclère;Tetsuya Matsui;Johan R. Meijer;C. Merow;M. Obersteiner;Haruka Ohashi;Adriana De Palma;B. Poulter;Andy Purvis;B. Quesada;C. Rondinini;A. Schipper;J. Settele;Richard Sharp;E. Stehfest;B. Strassburg;Kiyoshi Takahashi;Matthew V. Talluto;Wilfried Thuiller;N. Titeux;Piero Visconti;Christopher Ware;Florian Wolf;Rob Alkemade - 通讯作者:
Rob Alkemade
Poincaré series and zeta functions for surface group actions on ℝ-trees
ℝ-树上表面群作用的庞加莱级数和 zeta 函数
- DOI:
10.1007/pl00004654 - 发表时间:
1997 - 期刊:
- 影响因子:0.8
- 作者:
M. Pollicott;Richard Sharp - 通讯作者:
Richard Sharp
Statistics of multipliers for hyperbolic rational maps
双曲有理图乘数统计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Richard Sharp;A. Stylianou - 通讯作者:
A. Stylianou
Orbit counting in conjugacy classes for free groups acting on trees
作用于树的自由群的共轭类中的轨道计数
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
George Kenison;Richard Sharp - 通讯作者:
Richard Sharp
Richard Sharp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Sharp', 18)}}的其他基金
Workshop - Thermodynamic Formalism: Ergodic Theory and Geometry
研讨会 - 热力学形式主义:遍历理论和几何
- 批准号:
EP/S020969/1 - 财政年份:2019
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Critical Exponents and Thermodynamic Formalism on Geometrically Infinite Spaces
几何无限空间上的临界指数和热力学形式主义
- 批准号:
EP/P028373/1 - 财政年份:2017
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Hyperbolic Dynamics and Noncommutative Geometry
双曲动力学和非交换几何
- 批准号:
EP/J006580/1 - 财政年份:2012
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Workshop: Ergodic Theory and Geometry
研讨会:遍历理论与几何
- 批准号:
EP/F037805/1 - 财政年份:2008
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Analysis of Satellite Data on Auroral Helium Ions
极光氦离子卫星数据分析
- 批准号:
7421834 - 财政年份:1975
- 资助金额:
$ 30.81万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
- 批准号:
DP240100168 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
- 批准号:
MR/Y013476/1 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 30.81万 - 项目类别:
Fellowship