Fast and Accurate Electromagnetic Analysis of Metamaterials With Parallel Multilevel Fast Multipole Algorithm

利用并行多级快速多极算法对超材料进行快速准确的电磁分析

基本信息

  • 批准号:
    EP/J007471/1
  • 负责人:
  • 金额:
    $ 0.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Metamaterials are artificial structures having a vast variety of potential applications, such as sub-wavelength focusing, invisibility cloaking, and miniaturization of the antennas, due to their unusual electromagnetic properties. Solutions of electromagnetics problems involving metamaterials are extremely important to analyze these structures and their interactions with the environment. For example, accurate solutions of metamaterial problems can provide essential information on novel designs even before their actual realizations, preventing the waste of sources and time during the manufacturing of the prototypes. Unfortunately accurate simulations of metamaterials are extremely difficult since they are composite multi-scale structures, i.e., they consist of thousands of unit cells with small details whereas their overall dimensions can be very large with respect to the wavelength. Hence, accurate numerical analysis of metamaterials using full-wave solvers may require the solution of huge matrix equations involving millions of unknowns. In addition, metamaterials are usually functional at some resonance frequencies, where the numerical solutions may become unstable. Due to the limitations in their computational solutions, metamaterials could not be investigated in sufficient depth, and most of the studies in the literature are based on approximate homogenization techniques that are unable to provide rigorous and accurate analysis of realistic structures. The purpose of this study is to develop a fast and accurate solver based on a parallel implementation of a powerful algorithm, namely, the multilevel fast multipole algorithm (MLFMA), for the analysis of metamaterials. By developing a sophisticated simulation environment consisting of diverse components from different areas, such as numerical techniques, iterative method, fast algorithms, parallelization, and parallel computers, real-life problems involving complex metamaterials will be solved with unprecedented levels of accuracy and detail. In addition to academic impacts in computer science and high performance computing, the results are expected have high impacts in science and technology in a broad sense by showing the feasibility of new metamaterial designs for constructing the devices of the future's world.
超材料是一种人工结构,由于其不寻常的电磁特性,具有各种潜在的应用,如亚波长聚焦,隐形隐身和天线的小型化。电磁问题的解决方案涉及超材料是极其重要的分析这些结构及其与环境的相互作用。例如,超材料问题的精确解决方案甚至可以在实际实现之前提供关于新颖设计的基本信息,从而防止在原型制造期间浪费资源和时间。不幸的是,超材料的精确模拟是极其困难的,因为它们是复合多尺度结构,即,它们由具有小细节的数千个单位单元组成,而它们的总体尺寸相对于波长可以非常大。因此,使用全波解算器对超材料进行精确的数值分析可能需要求解涉及数百万个未知数的庞大矩阵方程。此外,超材料通常在某些谐振频率下是功能性的,其中数值解可能变得不稳定。由于其计算解的局限性,超材料不能得到足够深入的研究,文献中的大多数研究都是基于近似均匀化技术,无法提供严格和准确的分析现实结构。本研究的目的是开发一个快速,准确的求解器的基础上并行实现的一个强大的算法,即多层快速多极算法(MLFMA),用于分析的超材料。通过开发由来自不同领域的各种组件组成的复杂模拟环境,例如数值技术,迭代方法,快速算法,并行化和并行计算机,涉及复杂超材料的现实问题将以前所未有的精度和细节水平得到解决。除了对计算机科学和高性能计算的学术影响外,通过展示新的超材料设计用于构建未来世界的设备的可行性,预计这些结果将在广泛意义上对科学和技术产生重大影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozgur Ergul其他文献

New trends in computational electromagnetics
计算电磁学新趋势
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryoya Sadano;Yuichi Sudo;Fukuhito Ooshita;Hirotsugu Kakugawa;Toshimitsu Masuzawa;Ozgur Ergul
  • 通讯作者:
    Ozgur Ergul

Ozgur Ergul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了