Plasticity in NEUral Memristive Architectures

神经忆阻架构中的可塑性

基本信息

  • 批准号:
    EP/J00801X/1
  • 负责人:
  • 金额:
    $ 61.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

During the past two decades, philosophers, psychologists, cognitive scientists, clinicians and neuroscientists strived to provide authoritative definitions of consciousness within a neurobiological framework. Engineers have more recently joined this quest by developing neuromorphic VLSI circuits for emulating biological functions. Yet, to date artificial systems have not been able to faithfully recreate natural attributes such as true processing locality (memory and computation) and complexity (10^10 synapses per cm2), preventing the achievement of a long-term goal: the creation of autonomous cognitive systems.This project aspires to develop experimental platforms capable of perceiving, learning and adapting to stimuli by leveraging on the latest developments of five leading European institutions in neuroscience, nanotechnology, modeling and circuit design. The non-linear dynamics as well as the plasticity of the newly discovered memristor are shown to support Spike-based- and Spike-Timing-Dependent-Plasticity (STDP), making this extremely compact device an excellent candidate for realizing large-scale self-adaptive circuits; a step towards "autonomous cognitive systems". The intrinsic properties of real neurons and synapses as well as their organization in forming neural circuits will be exploited for optimising CMOS-based neurons, memristive grids and the integration of the two into realtime biophysically realistic neuromorphic systems. Finally, the platforms would be tested with conventional as well as abstract methods to evaluate the technology and its autonomous capacity.
在过去的二十年里,哲学家、心理学家、认知科学家、临床医生和神经科学家努力在神经生物学框架内为意识提供权威的定义。工程师们最近也加入了这一探索,开发了用于模拟生物功能的神经形态VLSI电路。然而,到目前为止,人工系统还不能忠实地再现真实的处理局部性(记忆和计算)和复杂性(每平方厘米10个突触)等自然属性,阻碍了一个长期目标的实现:创建自主认知系统。该项目渴望通过利用五家领先的欧洲机构在神经科学、纳米技术、建模和电路设计方面的最新发展,开发能够感知、学习和适应刺激的实验平台。新发现的忆阻器的非线性动力学和可塑性被证明支持基于尖峰和尖峰时序的可塑性(STDP),使这种极其紧凑的器件成为实现大规模自适应电路的极佳候选者;朝着“自主认知系统”迈出了一步。真实神经元和突触的内在属性以及它们在形成神经电路中的组织将被用于优化基于CMOS的神经元、记忆网格以及将两者集成到实时生物物理现实神经形态系统中。最后,这些平台将用常规和抽象的方法进行测试,以评估技术及其自主能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resistive switching characteristics of indium-tin-oxide thin film devices
氧化铟锡薄膜器件的阻变特性
  • DOI:
    10.1002/pssa.201330646
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khiat A
  • 通讯作者:
    Khiat A
Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
  • DOI:
    10.1088/1361-6463/aad361
  • 发表时间:
    2018-08-30
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Covi, E.;George, R.;Spiga, S.
  • 通讯作者:
    Spiga, S.
Emulating short-term synaptic dynamics with memristive devices
使用忆阻设备模拟短期突触动力学
  • DOI:
    10.5167/uzh-132668
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berdan, Radu
  • 通讯作者:
    Berdan, Radu
Stochastic switching of TiO2-based memristive devices with identical initial memory states.
具有相同初始存储状态的基于 TiO2 的忆阻器件的随机切换
  • DOI:
    10.1186/1556-276x-9-293
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Q;Khiat A;Salaoru I;Xu H;Prodromakis T
  • 通讯作者:
    Prodromakis T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Toumazou其他文献

A theoretical basis for very wide dynamic range switched-current analogue signal processing
On the design of low-noise current-mode optical preamplifiers
A Very High-Frequency Transistor-Only Linear Tunable Companding Current-Mode Integrator
On the Development of Analogue Sampled-Data Signal Processing
Using High Frequency Operational Amplifiers for Low Noise Design

Chris Toumazou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Toumazou', 18)}}的其他基金

Disruptive Semiconductor Technologies for Advanced Healthcare Systems
先进医疗系统的颠覆性半导体技术
  • 批准号:
    EP/N002474/1
  • 财政年份:
    2015
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
Engineering, Physical, Natural Sciences and Medicine Bridging Research in Antimicrobial resistance: Collaboration and Exchange (EMBRACE)
抗菌素耐药性的工程、物理、自然科学和医学桥接研究:合作与交流 (EMBRACE)
  • 批准号:
    EP/M027007/1
  • 财政年份:
    2015
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
Real-Time Neural Chemical Sensing in the Peripheral Nervous System
周围神经系统的实时神经化学传感
  • 批准号:
    EP/K009842/1
  • 财政年份:
    2013
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
Bio-inspired Technologies
仿生技术
  • 批准号:
    EP/H024581/1
  • 财政年份:
    2009
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
A Three Tier Bioimplantable Sensor Monitoring Platform
三层生物植入传感器监测平台
  • 批准号:
    EP/F04612X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
  • 批准号:
    2910663
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
  • 批准号:
    2322310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Continuing Grant
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了