Optimal Design of Very Large Tidal Stream Farms: for Shallow Estuarine Applications

超大型潮汐流场的优化设计:浅河口应用

基本信息

  • 批准号:
    EP/J010138/1
  • 负责人:
  • 金额:
    $ 143.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

This project is a collaboration between SuperGen Marine, the Exeter Centre for Water Resources (Non-SuperGen), Penn State University, Aquascientific Ltd., The Danish Hydraulics Research Institute and is mentored by Garrad Hassan partners. The primary goal is the introduction of a new hybrid optimisation approach that allows the multi-objective optimal design of the layout and power loadings of marine energy farms subject to environmental impacts. It involves a new, academically highly challenging integrated analytic/numerical/experimental, approach to optimising the performance of large tidal stream energy capture farms. The specific application focus involves tidal turbines suited to operating in shallow medium flow estuaries but the technique can be applied to all types of marine energy farms. Optimisation is subject to minimising flood risk, with further environmental impacts, such as sediment transport driven outcomes, being capable of subsequent incorporation as slow timescale effects. The work complements the PERAWAT project and has key partners in common. At present the state of the art in large tidal stream farms is the performance estimation of pre-defined large farm designs, while optimisation, requiring many performance calculations, is deemed to be computationally unrealistic for practical design purposes. The present project will overcome this barrier by employing a combination of :(i) a new hybrid approach which describes the farm via a parameterised analytic model, that is matched to a numerical description of the estuary (ii) a new highly efficient optimisation technique. The model parameters, which define the optimum turbine locations and turbine loading factors over tidal cycles, are computed via the process of matching of the farm model and estuary descriptions. The new class of optimisation technique (pioneered at Exeter) based upon sampled surface functions, allows a large reduction in the number of optimisation parameters which require to be estimated. This method exploits the spatial dependencies between farm parameters and has applications far beyond the tidal stream farm problem. An important spin off from multi-objective optimisation is that it allows the unification of farm design and environmental impact which until now have been treated as rather separated issues.The analytic and computational work will draw on a body of on going work at Exeter including existing experimental data on model and field trial 10kW scale near surface turbines obtained by Exeter/Aquascientific Ltd. This will be enhanced by an experimental study at Edinburgh. This will investigate (i) arrays of many tens of turbines, (manufactured in injection moulded kit form) and (ii) highly detailed interactions between small groups of large models in the new All Waters test tank. Of particular importance will be information on the relationship between power absorption and turbine geometry and on turbine interactions. The outcomes of the work will be a combination: of new science and practical techniques that make the development of follow on tools for large scale tidal stream farm design optimisation realistic, plus the dissemination tools required to rapidly and effectively deliver these to the maine renewable energy community. This will impact on: investor/industrial provider confidence, and on the tidal stream research community, allowing the subsequent creation of a range of practical design tools for helping deliver 20:20 and 20:50 renewable energy targets. Garrad Hassan will mentor the project and undertake a due diligence study on the work for the purposes of dissemination to the wider stakeholder community.The project includes a set of processes and dedicated events aimed at enahancing the operation of the SuperGen Marine consortium and promoting effective pathways to impact and has been planned explicitly around future research vissions of SuperGen.
该项目是SuperGen Marine、埃克塞特水资源中心(非SuperGen)、宾夕法尼亚州立大学、Aquascientific有限公司、丹麦液压研究所,由Garrad哈桑合伙人指导。主要目标是引入一种新的混合优化方法,允许对海洋能源农场的布局和电力负荷进行多目标优化设计,以应对环境影响。它涉及一种新的,学术上极具挑战性的综合分析/数值/实验方法,以优化大型潮汐流能量捕获农场的性能。具体的应用重点涉及适合在浅中流河口运行的潮汐涡轮机,但该技术可应用于所有类型的海洋能源农场。优化是受洪水风险最小化,进一步的环境影响,如泥沙输运驱动的结果,能够随后纳入缓慢的时间尺度效应。这项工作补充了PERAWAT项目,并有共同的关键合作伙伴。目前,大型潮汐流农场的最新技术是对预定义的大型农场设计进行性能估计,而需要进行许多性能计算的优化被认为对于实际设计目的来说在计算上是不现实的。本项目将克服这一障碍,采用的组合:(i)一个新的混合方法,通过参数化的分析模型,描述了农场,这是匹配的河口的数值描述(ii)一个新的高效的优化技术。通过农场模型和河口描述的匹配过程计算模型参数,这些参数定义了潮汐周期内的最佳涡轮机位置和涡轮机加载因子。一类新的优化技术(率先在埃克塞特)的基础上采样的表面功能,允许大量减少的优化参数,需要估计。该方法利用农场参数之间的空间依赖关系,其应用远远超出了潮汐流农场问题。多目标优化的一个重要副产品是,它允许农场设计和环境影响的统一,到目前为止,这两个问题一直被视为相当独立的问题。分析和计算工作将借鉴埃克塞特正在进行的工作,包括埃克塞特获得的模型和现场试验10 kW规模近地表涡轮机的现有实验数据。这将通过在爱丁堡的一项实验研究得到加强。这将研究(i)数十个涡轮机的阵列(以注塑套件形式制造)和(ii)新的All沃茨试验箱中小型大型模型组之间的高度详细的相互作用。特别重要的是关于功率吸收和涡轮机几何形状之间的关系以及关于涡轮机相互作用的信息。这项工作的成果将是一个组合:新的科学和实用技术,使大规模潮汐流农场设计优化的后续工具的发展现实,加上传播工具,需要迅速和有效地提供这些缅因州可再生能源社区。这将影响到:投资者/工业供应商的信心,并在潮汐流研究界,允许随后创建一系列实用的设计工具,以帮助实现20:20和20:50的可再生能源目标。Garrad哈桑将指导该项目,并对该项目进行尽职调查研究,以便向更广泛的利益相关者社区传播。该项目包括一系列流程和专门活动,旨在加强SuperGen Marine财团的运作,促进有效的影响途径,并已围绕SuperGen未来的研究愿景进行了明确规划。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of channel geometry on tidal energy extraction in estuaries
河道几何形状对河口潮汐能提取的影响
  • DOI:
    10.1016/j.renene.2016.09.009
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Garcia-Oliva M
  • 通讯作者:
    Garcia-Oliva M
Investigation of the performance of a staggered configuration of tidal turbines using CFD
  • DOI:
    10.1016/j.renene.2015.03.001
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    M. Gebreslassie;G. Tabor;M. Belmont
  • 通讯作者:
    M. Gebreslassie;G. Tabor;M. Belmont
CFD Simulations for Sensitivity Analysis of Different Parameters to the Wake Characteristics of Tidal Turbine
  • DOI:
    10.4236/ojfd.2012.23006
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gebreslassie;G. Tabor;M. Belmont
  • 通讯作者:
    M. Gebreslassie;G. Tabor;M. Belmont
The impacts of tidal turbines on water levels in a shallow estuary
  • DOI:
    10.1016/j.ijome.2017.07.006
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garcia-Oliva, Miriam;Djordjevic, Slobodan;Tabor, Gavin R.
  • 通讯作者:
    Tabor, Gavin R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Belmont其他文献

Osteonecrosis is associated with APOL1 variants in African Americans with systemic lupus erythematosus
患有系统性红斑狼疮的非裔美国人中,骨坏死与 APOL1 变异相关
  • DOI:
    10.3389/flupu.2023.1219277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Yip;Meredith Akerman;Ruth Fernandez Ruiz;Nicole Leung;Huda Algasas;Yingzhi Qian;Jill P. Buyon;Jasmin Divers;P. Izmirly;Michael Belmont;Ashira Blazer
  • 通讯作者:
    Ashira Blazer

Michael Belmont的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Belmont', 18)}}的其他基金

System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs
具有多个 PTO 的大容量波浪能转换器的系统级协同设计与控制
  • 批准号:
    EP/V040634/1
  • 财政年份:
    2021
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Research Grant
Dynamic Environment Prediction: safe launch and recovery in high sea states: Part of The Launch and Recovery Co-Creation Initiative.
动态环境预测:公海状态下的安全发射和回收:发射和回收共同创造计划的一部分。
  • 批准号:
    EP/N009142/1
  • 财政年份:
    2016
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Research Grant
Wave Hub baseline study
Wave Hub 基线研究
  • 批准号:
    NE/I015183/1
  • 财政年份:
    2010
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Research Grant
Short Term Deterministic Wave Prediction as a Tool for Enhanced Performance with Survivability for Wave Energy Converters.
短期确定性波浪预测作为增强波浪能转换器性能和生存能力的工具。
  • 批准号:
    EP/F027176/1
  • 财政年份:
    2007
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Research Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Research Infrastructure: Next-generation Very Large Array Design Activities: 2024-2026
研究基础设施:下一代甚大阵列设计活动:2024-2026
  • 批准号:
    2334267
  • 财政年份:
    2023
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Cooperative Agreement
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Standard Grant
Vera: A new paradigm to enable efficient design of VERy large Aircraft structures - the key for innovative aircraft design concepts
Vera:实现超大型飞机结构高效设计的新范式——创新飞机设计概念的关键
  • 批准号:
    EP/W022508/1
  • 财政年份:
    2023
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Fellowship
Parent training for parents of toddlers born very premature: A factorial design to test web delivery and telephone coaching
针对早产儿父母的家长培训:测试网络交付和电话辅导的析因设计
  • 批准号:
    10307289
  • 财政年份:
    2021
  • 资助金额:
    $ 143.56万
  • 项目类别:
Parent training for parents of toddlers born very premature: A factorial design to test web delivery and telephone coaching
针对早产儿父母的家长培训:测试网络交付和电话辅导的析因设计
  • 批准号:
    10672219
  • 财政年份:
    2021
  • 资助金额:
    $ 143.56万
  • 项目类别:
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1807461
  • 财政年份:
    2018
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1807520
  • 财政年份:
    2018
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1849588
  • 财政年份:
    2018
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Continuing Grant
New Technologies for Very Large-Scale Electronic Design Automation
超大规模电子设计自动化新技术
  • 批准号:
    RGPIN-2014-04098
  • 财政年份:
    2018
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Discovery Grants Program - Individual
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1807575
  • 财政年份:
    2018
  • 资助金额:
    $ 143.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了