SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
基本信息
- 批准号:1807575
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The computing power of biology is incredible, evident in the natural world in the intricate patterns underlying materials and the body plan of animals. Cells build these structures by using networks of interacting bio-molecules, encoded in their DNA, that function as microscopic computers, the power of which grows as many cells communicate to work together on a problem. The goal of this project is to significantly scale-up the ability to build these systems by design such that cells can be programmed to perform complex computational tasks. This will be done by creating software that allows a user to write code, exactly as one would program a computer, which is then compiled to a DNA sequence. New theoretical tools will be applied to determine the power required by the cell to run these programs and how best to distribute tasks between circuits encoded in cells and conventional electronic systems. This research will broadly impact biotechnology, which is increasingly being used to commercially produce a wide range of products, from consumer goods to high-end advanced materials. Current products do not harness the computational potential of cells; in other words, all the genes are turned on all the time. This research will enable cells to be programmed to build chemicals and materials in multiple steps, both by performing the computations inside of the cells and also communicating across cells. This work is interdisciplinary and requires backgrounds in Biology, Chemistry, Mathematics, Biological Engineering, Electrical Engineering, and Computer Science. As such, the project includes the development of new educational platforms in anticipation of a need in industry for students trained at the interface between traditionally separated fields. This includes a new undergraduate-level Synthetic Biology Design course, an industrial co-op, and curriculum material "How to Grow Almost Anything," which will be made public at an international level. To build the complexity of the natural world, cells use regulatory networks made up of interacting bio-molecules to control the timing and conditions for gene regulation. For the last 20 years, researchers have been able to build synthetic genetic circuits by artfully combining regulatory interactions. The problem is that the largest of such circuits only consist of ~10 regulators, far smaller than natural networks, which drastically limits the computation that can be performed. The proposed research will develop technologies that collectively enable a massive scale-up in computational complexity to ~10^5 regulators. The first objective seeks to increase the size of circuits within cells. Logic gates based on Cas9 have enormous scale-up potential, but are limited by dCas9 toxicity and sequence repeats. A set of gates will be designed to fix these problems, guided by mathematical modeling. A framework for design automation will be developed that enables a Verilog specification to be converted into a logic diagram, that is then divided up amongst many interacting cells. The second objective seeks to distribute a genetic circuit design across multiple communicating cells. The number and reliability of cell-cell communication signals will be improved by directed evolution to increase the number of channels from 2 to 8. These will be implemented in living cells and non-living systems, thus enabling a broad range of applications inside and outside the bioreactor. Combined with 50 gates/cell, this platform offers the possibility of multicellular circuits containing 10^5+ gates. Some applications require deployment as a non-living system, for example when the application is outside of the lab, thus requiring containment. The third objective seeks to translate the parts developed in Objectives 1 and 2 to operate in multiple communicating lipid vesicles encapsulating cell-free protein extract. Cas9 gates and additional communication channels will be characterized to expand the computational potential. These will be characterized as gates and implemented using Electronic Design Automation tools to automate the design of large systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学的计算能力是令人难以置信的,在自然世界中,在材料和动物的身体计划的复杂模式中显而易见。 细胞通过使用相互作用的生物分子网络来构建这些结构,这些生物分子编码在它们的DNA中,其功能就像微观计算机一样,随着许多细胞相互交流以共同解决一个问题,其能力就会增长。该项目的目标是通过设计来显着扩大构建这些系统的能力,以便可以对细胞进行编程以执行复杂的计算任务。 这将通过创建允许用户编写代码的软件来实现,就像对计算机编程一样,然后将其编译为DNA序列。新的理论工具将用于确定细胞运行这些程序所需的功率,以及如何最好地在细胞中编码的电路和传统电子系统之间分配任务。这项研究将广泛影响生物技术,生物技术正越来越多地用于商业生产各种产品,从消费品到高端先进材料。 目前的产品并没有利用细胞的计算潜力;换句话说,所有的基因都是一直开启的。 这项研究将使细胞能够通过多个步骤编程来构建化学物质和材料,既可以在细胞内进行计算,也可以在细胞间进行通信。这项工作是跨学科的,需要在生物学,化学,数学,生物工程,电气工程和计算机科学的背景。因此,该项目包括开发新的教育平台,以满足行业对在传统分离领域之间接受培训的学生的需求。 这包括一个新的本科水平的合成生物学设计课程,一个工业合作社,和课程材料“如何种植几乎任何东西”,这将在国际层面上公开。为了构建自然世界的复杂性,细胞使用由相互作用的生物分子组成的调控网络来控制基因调控的时间和条件。在过去的20年里,研究人员已经能够通过巧妙地结合调控相互作用来构建合成基因电路。问题是,最大的此类电路仅由~10个调节器组成,远远小于自然网络,这极大地限制了可以执行的计算。拟议的研究将开发技术,共同使计算复杂性大规模扩大到约10^5个监管机构。第一个目标是增加细胞内电路的大小。 基于Cas9的逻辑门具有巨大的放大潜力,但受到dCas 9毒性和序列重复的限制。一组门将被设计来解决这些问题,由数学建模指导。 将开发一个设计自动化框架,使Verilog规范转换为逻辑图,然后在许多相互作用的单元之间划分。第二个目标是将基因电路设计分布在多个通信细胞上。通过定向演进将信道数量从2个增加到8个,将提高小区间通信信号的数量和可靠性。 这些将在活细胞和非生命系统中实施,从而实现生物反应器内外的广泛应用。结合50门/单元,该平台提供了包含10^5+门的多单元电路的可能性。一些应用需要作为非生命系统部署,例如当应用在实验室之外时,因此需要遏制。第三个目标是将目标1和2中开发的部分转化为在包封无细胞蛋白质提取物的多个连通脂质囊泡中操作。Cas9门和额外的通信通道将被表征以扩展计算潜力。这些将被描述为门,并使用电子设计自动化工具来实现大型系统的自动化设计。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Voigt其他文献
IWBDA 2009 International Workshop on Bio-Design Automation
IWBDA 2009生物设计自动化国际研讨会
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
D. Densmore;Marc D. Riedel;S. Hassoun;Adam Shea;Brian Fett;K. Parhi;Ehasn Ullah;Kyongbum Lee;Chris Winstead;Chris J. Myers;Vassilis Sotiropoulos;Jonathan R. Tomshine;Katherine Volzing;Poonam Srivastava;Y. Kaznessis;Howard Salis;Ethan Mirsky;Christopher Voigt;S. Bagh;Mahuya Mandal;David McMillen;Bing Xia;J. Kittleson;Timothy Ham;J. C. Anderson;Sherief Reda;P. J. Steiner;M. Galdzicki;Deepak Chandran;Herbert M. Sauro;Daniel Cook;J. Gennari;Tsung;Tsung;S. Hamada;Satoshi Murata;Giuseppe Nicosia;Ron Weiss - 通讯作者:
Ron Weiss
PlasmidHawk: Alignment-based Lab-of-Origin Prediction of Synthetic Plasmids
PlasmidHawk:基于比对的合成质粒实验室原产地预测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Qi Wang;Tian;R. L. Elworth;T. Treangen;Michele Calos;Christopher Voigt;Drew Endy;Ellington Andrew;Christopher Anderson;David Waugh;Alfonso Jaramillo - 通讯作者:
Alfonso Jaramillo
Christopher Voigt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Voigt', 18)}}的其他基金
Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014; Los Angeles, Manhatten Beach Marriott Conference Center, CA, July 14-17, 2014
合成生物学:工程、进化和设计 (SEED) 会议 2014;
- 批准号:
1446280 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Nitroplast: A Light-Driven, Synthetic Nitrogen-Fixing Organelle
合作研究:Nitroplast:一种光驱动的合成固氮细胞器
- 批准号:
1331195 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Conference: Gordon Conference on Synthetic Biology: (Re-constructing and Re-programming Life at Mount Snow Resort, Vermont
会议:戈登合成生物学会议:(佛蒙特州雪山度假村的生命重建和重新编程
- 批准号:
1341255 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Cyberplasm - An autonomous micro-robot constructed using synthetic biology
合作研究:Cyberplasm - 使用合成生物学构建的自主微型机器人
- 批准号:
1224898 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Cyberplasm - An autonomous micro-robot constructed using synthetic biology
合作研究:Cyberplasm - 使用合成生物学构建的自主微型机器人
- 批准号:
0943302 - 财政年份:2009
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Multi-input Multi-output Cellular Control: Bacterial Type III Secretion as a Model System
职业:多输入多输出细胞控制:细菌 III 型分泌作为模型系统
- 批准号:
0547637 - 财政年份:2006
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant