DISTRIBUTED SENSING, CONTROL AND DECISION MAKING IN MULTIAGENT AUTONOMOUS SYSTEMS
多智能体自治系统中的分布式传感、控制和决策
基本信息
- 批准号:EP/J011894/2
- 负责人:
- 金额:$ 160.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Autonomous intelligent systems will find important applications in our future society. Initial applications will be in the following areas: surveillance, intelligence gathering and operational control in the areas of disaster mitigation (earthquake, nuclear catastrophe, military combat, oil-spills at sea, transport infrastructure breakdown, analysis and assistance with terrorist attacks), space exploration at remote locations (at Trojan asteroids, on Mars and in orbit observations around planets, deep underwater explorations and robotics for offshore oil exploration disasters) followed by large scale applications such as agricultural, search and rescue, manufacturing, and autonomous household robots. These autonomous system will require quick, appropriate, and at the same time informative-to-partners, actions by teams of robots. They can also be computing network based intelligent agents with sensing and control capabilities. It will be a societal requirement that these (semi-)autonomously operating systems to inform their human supervisors about the reasoning behind their actions and their future plans in concise notes for their safety and acceptability by society.Network based software agents have been in use by our society for some time. Our society is going through information exchange revolution that is developing towards networked intelligent devices. Many of these infrastructure systems are based on well defined discrete inputs and outputs either from human operators or from low dimensional sensor measurements. Little progress has however been made in robot intelligence of autonomy where high complexity, changing environment is to be sensed, reasoned about and acted upon quickly. Partial results have been reported in DARPA, Robocup projects that do not provide comprehensive systematic approach or are not fully publicly available. Progress has only been made in heavily infrastructured environments of robots. We do not yet have the methodology for a set of autonomous vehicles or agent systems to operate reliably and (semi-)autonomously in complex infrastructure-free environments to solve problems efficiently with minimal human supervision. The reason is that current intelligent agent technology does not provide solutions. Sensor networks with simple computational nodes, that were developed for low power and computational resources do not provide solutions. They miss the ability of high complexity conceptual abstractions onboard a single agent. The computations of these type of agents cannot be substituted by data fusion of low complexity agents due to typical real-time and communication bottlenecks. Methods of multi-agent decentralized decision theory have been developed and very successfully used prior to this project but have not been properly exploited for multiple complex agents.This project intends to develop a new methodology for autonomous cooperating multi-agent systems that is to boost the technological capabilities of our partner companies and the robotics industry in general. The project will provide the missing capabilities of abstractions concerning world modeling, situational awareness, learning and information management onboard a single agent. These capabilities will enable efficient realtime decision making within multi-agent cooperation and decentralized decision making in poorly structured or infrastructure free environments. These methods will connect digital computing power with human conceptual structures to enable robots to model the world with layers of high and low level concepts as humans do.
自主智能系统将在我们未来的社会中找到重要的应用。最初的应用将在以下领域:减灾领域的监测、情报收集和业务控制(地震、核灾难、军事战斗、海上漏油、运输基础设施故障、分析和协助恐怖袭击)、偏远地区的空间探索(特洛伊小行星、火星和行星周围的轨道观测、深海水下探索和近海石油勘探灾难的机器人技术),其次是大规模应用,如农业、搜索和救援,制造和自主家用机器人。这些自主系统将需要快速,适当,并在同一时间的信息合作伙伴,行动的机器人团队。它们也可以是具有感测和控制能力的基于计算网络的智能代理。这将是一个社会的要求,这些(半)自主操作的系统,以告知他们的人类监督员关于他们的行动背后的推理和他们的未来计划,在简明扼要的说明,为他们的安全性和社会的可接受性。基于网络的软件代理已经在我们的社会使用了一段时间。我们的社会正在经历信息交换革命,正在向网络智能设备发展。这些基础设施系统中的许多基于来自人类操作员或来自低维传感器测量的明确定义的离散输入和输出。然而,在高度复杂、不断变化的环境中,机器人智能的自主性几乎没有取得进展,需要快速感知、推理和采取行动。DARPA的Robocup项目报告了部分结果,这些项目没有提供全面的系统方法或没有完全公开。仅在机器人的基础设施环境中取得了进展。我们还没有一套自动驾驶汽车或代理系统在复杂的无基础设施环境中可靠和(半)自动运行的方法,以最少的人为监督有效地解决问题。原因是目前的智能代理技术没有提供解决方案。针对低功率和计算资源开发的具有简单计算节点的传感器网络没有提供解决方案。他们错过了单个智能体上高复杂性概念抽象的能力。由于典型的实时和通信瓶颈,这些类型的代理的计算不能被低复杂度代理的数据融合所取代。多智能体分散决策理论的方法已经开发出来,并非常成功地使用之前,这个项目,但还没有适当地利用多个复杂的agents.This项目旨在开发一种新的方法,自主合作的多智能体系统,这是提高我们的合作伙伴公司和机器人行业的技术能力一般。该项目将提供有关世界建模,态势感知,学习和信息管理船上一个单一的代理抽象的缺失功能。这些功能将使多代理合作中的高效实时决策和结构不良或无基础设施环境中的分散决策成为可能。这些方法将把数字计算能力与人类的概念结构联系起来,使机器人能够像人类一样用高层次和低层次的概念来模拟世界。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intuitive Programming with Remotely Instructed Robots inside Future Gloveboxes
- DOI:10.1145/3371382.3378326
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Ayan Ghosh;S. Veres;D. A. P. Soto;James E. Clarke;J. Rossiter
- 通讯作者:Ayan Ghosh;S. Veres;D. A. P. Soto;James E. Clarke;J. Rossiter
Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.
使用人工神经网络改进系统识别并分析已识别神经元响应的个体差异。
- DOI:10.1016/j.neunet.2015.12.002
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Costalago Meruelo A
- 通讯作者:Costalago Meruelo A
The frame alignment problem in formations of multi-agent systems
多智能体系统编队中的框架对齐问题
- DOI:10.3182/20130626-3-au-2035.00031
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Caicedo-Núñez C
- 通讯作者:Caicedo-Núñez C
Virtual Spring-Damper Mesh-Based Formation Control for Spacecraft Swarms in Potential Fields
势场中航天器群基于虚拟弹簧阻尼器网格的编队控制
- DOI:10.2514/1.g000569
- 发表时间:2015-02
- 期刊:
- 影响因子:0
- 作者:Qifeng Chen;S;or M Veres;Yaonan Wang;Yunhe Meng
- 通讯作者:Yunhe Meng
Formal Specification and Automatic Verification of Conditional Commitments
有条件承诺的正式规范和自动验证
- DOI:10.1109/mis.2015.6
- 发表时间:2015
- 期刊:
- 影响因子:6.4
- 作者:El Kholy W
- 通讯作者:El Kholy W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandor Veres其他文献
Simultaneous search and monitoring by multiple aerial robots
多空中机器人同时搜索监控
- DOI:
10.1016/j.robot.2023.104544 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Haoyu Zhang;Sandor Veres;Andreas Kolling - 通讯作者:
Andreas Kolling
Sandor Veres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandor Veres', 18)}}的其他基金
DISTRIBUTED SENSING, CONTROL AND DECISION MAKING IN MULTIAGENT AUTONOMOUS SYSTEMS
多智能体自治系统中的分布式传感、控制和决策
- 批准号:
EP/J011894/1 - 财政年份:2012
- 资助金额:
$ 160.91万 - 项目类别:
Research Grant
Engineering Autonomous Space Software
工程自主空间软件
- 批准号:
EP/F037570/1 - 财政年份:2008
- 资助金额:
$ 160.91万 - 项目类别:
Research Grant
METHODS OF RELIABILITY-CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES
自主水下航行器可靠性控制方法
- 批准号:
EP/E02677X/1 - 财政年份:2007
- 资助金额:
$ 160.91万 - 项目类别:
Research Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
- 批准号:31570490
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
- 批准号:60977009
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
- 批准号:30900771
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
- 批准号:60776795
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
- 批准号:30370952
- 批准年份:2003
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
- 批准号:
2340176 - 财政年份:2024
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
Problems in Distributed Sensing and Control
分布式传感与控制中的问题
- 批准号:
1917879 - 财政年份:2019
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent Control to Improve Battery Manufacturing Productivity and Efficiency
职业:分布式传感和实时智能控制的协作建模,以提高电池制造生产力和效率
- 批准号:
1935728 - 财政年份:2018
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart Agriculture
卓越的研究:为智能农业开发稳健的分布式自动化传感和控制系统
- 批准号:
1832110 - 财政年份:2018
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
EFRI C3 SoRo: Muscle-like Cellular Architectures and Compliant, Distributed Sensing and Control for Soft Robots
EFRI C3 SoRo:软机器人的类肌肉细胞架构和兼容的分布式传感和控制
- 批准号:
1832795 - 财政年份:2018
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
Distributed Intelligent Sensing and Control for Manufacturing Automation
用于制造自动化的分布式智能传感与控制
- 批准号:
197339-2013 - 财政年份:2017
- 资助金额:
$ 160.91万 - 项目类别:
Discovery Grants Program - Individual
Distributed Intelligent Sensing and Control for Manufacturing Automation
用于制造自动化的分布式智能传感与控制
- 批准号:
197339-2013 - 财政年份:2016
- 资助金额:
$ 160.91万 - 项目类别:
Discovery Grants Program - Individual
STTR Phase I: Triboluminescent sensor system for quasi-distributed load sensing on wind blades for active control of wind turbines
STTR 第一阶段:用于风力叶片准分布式负载传感的摩擦发光传感器系统,用于风力涡轮机的主动控制
- 批准号:
1549716 - 财政年份:2016
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant
Active control of far-field sound power produced by vibrating structures using direct distributed sensing of acoustic radiation modes
使用声辐射模式的直接分布式传感对振动结构产生的远场声功率进行主动控制
- 批准号:
1721765 - 财政年份:2016
- 资助金额:
$ 160.91万 - 项目类别:
Studentship
Problems in Distributed Sensing and Control
分布式传感与控制中的问题
- 批准号:
1607101 - 财政年份:2016
- 资助金额:
$ 160.91万 - 项目类别:
Standard Grant