Development of a microscopic gas diffusion-reaction model for a H2 producing biocatalyst
产氢生物催化剂微观气体扩散反应模型的开发
基本信息
- 批准号:EP/J015571/1
- 负责人:
- 金额:$ 21.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Providing the technology for production of renewable energy is one of the grandchallenges of this century. There are alternatives to oil, gas and nuclear such as water, wind and solar power. Of those, the latter is a virtually unlimited power source and we think that every effort should be undertaken to try to harvest the power of the sun. This is not an easy task because light energy needs to be converted into a form of energy that can be stored and supplied on demand. A convenient storage medium are molecules comprised of atomsthat are held together by energy-rich covalent bonds. Indeed, over millions of years nature has stored sun light in form of organic molecules (fossil fuels) via natural photosynthesis. A carbon-free alternative storage medium is molecular hydrogen with the added advantage that the energy density that can be stored with hydrogen is significantly larger than for fossil fuels. Thus, molecular hydrogen is envisaged as one of the primary energy carriers of the future. One of the grand challenges for scientists is to find or design a cheap catalyst that allows for efficient production of hydrogen from sunlight and a source for hydrogen atoms, ideally water. Clearly, one of the most sustainable approaches to hydrogen production is photocatalytic water oxidation, although this process requires efficient catalysts. Their design is by no means trivial and can probably be considered as the holy grail of contemporary material science. A viable alternative that we investigate here is to exploit biological molecules (hydrogenases) that can be found in microbes such as green algae and cyanobacteria capable of photosynthetic water splitting. Pilot plants of H2 producing organisms exist, but there are major barriers that must be overcome to bring the process to commercial viability. The most important one that needs to be addressed is the high sensitivity of the organism's hydrogenase to molecular oxygen. Evolved under anaerobic conditions, the biomolecule gets inhibited or damaged upon exposure of the oxygen that is around us in the atmosphere. There is evidence that hydrogenases may be modified so as to render the molecule less sensitive to oxygen. In order to facilitate this optimization process we proposehere to investigate theoretically the primary events of the oxidative damage, that is diffusion and binding of oxygen molecules to the active site of hydrogenases, by developing novel molecular simulation methods. The simulations will help to understand and interpret recent experimental measurements on a molecular level. For example, they will allow us to understand which pathways oxygen molecules take before they damage the active site and how fast this process occurs. The microscopic information gained from simulation will be vital for the suggestion of modifications (mutations) of hydrogenase that aim to restrict the access and the binding of molecular oxygen while leaving the catalytic power for hydrogen production unchanged. The effects of the suggested mutations will be predicted by our simulations and tested in vitro by an experimental colleague. The long term goal of this project is to obtain a hydrogenase mutant with significantly increased aerotolerance, which can be used for hydrogen production on a technological scale. This would have a tremendous socio-economic impact as the hydrogen industry is likely to take a prominent position on the future energy market.
为生产可再生能源提供技术是本世纪的重大挑战之一。除了石油、天然气和核能,还有水、风能和太阳能等替代能源。其中,后者实际上是一种无限的能量来源,我们认为应该尽一切努力获取太阳的能量。这并不是一项容易的任务,因为光能需要转化为一种可以按需储存和供应的能量。一种方便的存储介质是由原子组成的分子,这些原子通过能量丰富的共价键结合在一起。事实上,数百万年来,自然界通过自然光合作用以有机分子(化石燃料)的形式储存了太阳光。一种无碳的替代存储介质是分子氢,另外一个优点是,与氢一起存储的能量密度比化石燃料要大得多。因此,分子氢被认为是未来的主要能源载体之一。科学家面临的重大挑战之一是寻找或设计一种廉价的催化剂,使其能够从阳光中高效地生产氢气,并提供氢原子的来源,最好是水。显然,最可持续的制氢方法之一是光催化水氧化,尽管这一过程需要高效的催化剂。它们的设计绝不是微不足道的,很可能被视为当代材料科学的圣杯。我们在这里研究的一个可行的替代方案是利用生物分子(氢酶),这种生物分子可以在绿藻和蓝藻等微生物中找到,能够进行光合作用分解水分。产氢微生物的中试工厂是存在的,但要将这一过程转化为商业可行性,必须克服一些重大障碍。需要解决的最重要的一个问题是生物体的氢酶对分子氧的高度敏感性。这种生物分子在厌氧条件下进化,暴露在大气中我们周围的氧气中会受到抑制或破坏。有证据表明,氢酶可以被修饰,从而降低分子对氧的敏感度。为了促进这一优化过程,我们建议通过发展新的分子模拟方法,从理论上研究氧化损伤的主要事件,即氧分子在氢酶活性部位的扩散和结合。这些模拟将有助于在分子水平上理解和解释最近的实验测量。例如,它们将让我们了解氧分子在破坏活性部位之前走的是什么途径,以及这个过程发生的速度有多快。从模拟中获得的微观信息对于氢酶的修饰(突变)的建议至关重要,该修饰(突变)的目的是限制分子氧的访问和结合,同时保持制氢的催化能力不变。建议的突变的影响将通过我们的模拟进行预测,并由一位实验同事在体外进行测试。该项目的长期目标是获得一种氢酶突变体,其耐氧性显著提高,可以用于技术规模的氢气生产。这将产生巨大的社会经济影响,因为氢气工业很可能在未来的能源市场上占据突出地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.
计算小配体进出埋藏蛋白质活性位点的扩散速率常数。
- DOI:10.1016/bs.mie.2016.05.039
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Wang PH
- 通讯作者:Wang PH
Aerobic damage to [FeFe]-hydrogenases: activation barriers for the chemical attachment of O2.
- DOI:10.1002/anie.201400534
- 发表时间:2014-04-14
- 期刊:
- 影响因子:16.6
- 作者:Kubas, Adam;De Sancho, David;Best, Robert B.;Blumberger, Jochen
- 通讯作者:Blumberger, Jochen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jochen Blumberger其他文献
Stabilized coupled trajectory mixed quantum-classical algorithm with improved energy conservation: CTMQC-EDI.
具有改进能量守恒的稳定耦合轨迹混合量子经典算法:CTMQC-EDI。
- DOI:
10.1063/5.0183589 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aaron Dines;M. Ellis;Jochen Blumberger - 通讯作者:
Jochen Blumberger
Shallow conductance decay along the emheme/em array of a single tetraheme protein wire
沿着单个四血红素蛋白丝的血红素/em 阵列的浅电导衰减
- DOI:
10.1039/d4sc01366b - 发表时间:
2024-08-07 - 期刊:
- 影响因子:7.400
- 作者:
Kavita Garg;Zdenek Futera;Xiaojing Wu;Yongchan Jeong;Rachel Chiu;Varun Chittari Pisharam;Tracy Q. Ha;Albert C. Aragonès;Jessica H. van Wonderen;Julea N. Butt;Jochen Blumberger;Ismael Díez-Pérez - 通讯作者:
Ismael Díez-Pérez
Journal Pre-proof Methemoglobin formation in mutant Hemoglobin α-chains: electron transfer parameters and rates
期刊预证明突变血红蛋白 α 链中高铁血红蛋白的形成:电子转移参数和速率
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Vaibhav A. Dixit;Jochen Blumberger;S. K. Vyas - 通讯作者:
S. K. Vyas
Frontiers in molecular simulation of solvated ions, molecules and interfaces.
溶剂化离子、分子和界面的分子模拟前沿。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jochen Blumberger;M. Gaigeot;M. Sulpizi;R. Vuilleumier - 通讯作者:
R. Vuilleumier
Jochen Blumberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jochen Blumberger', 18)}}的其他基金
Characterisation of electron transport in bacterial nano-wire proteins through high performance computing and experimentation
通过高性能计算和实验表征细菌纳米线蛋白中的电子传输
- 批准号:
EP/M001946/1 - 财政年份:2015
- 资助金额:
$ 21.82万 - 项目类别:
Research Grant
Computation of electron transfer properties for heme-containing oxidoreductases
含血红素氧化还原酶的电子转移特性的计算
- 批准号:
EP/F004699/1 - 财政年份:2008
- 资助金额:
$ 21.82万 - 项目类别:
Research Grant
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Near-infrared microscopic observation and gas composition analysis of fluid inclusions for hydrothermal deposits - an application to exploration
热液矿床流体包裹体的近红外显微观察和气体成分分析——在勘探中的应用
- 批准号:
21K04960 - 财政年份:2021
- 资助金额:
$ 21.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imaging mass spectrometry at isomeric chemical resolution using gas phase ion/ion reactions
使用气相离子/离子反应进行异构化学分辨率成像质谱分析
- 批准号:
10246507 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Dermal-Epidermal Junction Disruptors: Mechanistic Insights
真皮-表皮连接破坏者:机制见解
- 批准号:
10359790 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Imaging mass spectrometry at isomeric chemical resolution using gas phase ion/ion reactions
使用气相离子/离子反应进行异构化学分辨率成像质谱分析
- 批准号:
10027319 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Imaging mass spectrometry at isomeric chemical resolution using gas phase ion/ion reactions
使用气相离子/离子反应进行异构化学分辨率成像质谱分析
- 批准号:
10418780 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Photoacoustic Microscopy of the Awake Mouse Brain
清醒小鼠大脑的光声显微镜
- 批准号:
9914138 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Platelet Production in a Pulmonary-based Microfluidic Reactor
基于肺的微流体反应器中的血小板生产
- 批准号:
9907840 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Imaging mass spectrometry at isomeric chemical resolution using gas phase ion/ion reactions
使用气相离子/离子反应进行异构化学分辨率成像质谱分析
- 批准号:
10669048 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Anesthetic and synthetic cooling flavors in E-cigarettes: Chemistry and respiratory effects modulating nicotine intake
电子烟中的麻醉剂和合成清凉香料:调节尼古丁摄入量的化学和呼吸效应
- 批准号:
9982329 - 财政年份:2018
- 资助金额:
$ 21.82万 - 项目类别:
The study of microscopic structures that emerge from the gas-liquid interface of single rising bubbles in a hydrophobically modified alkali-soluble emulsion polymer solution
疏水改性碱溶性乳液聚合物溶液中单个上升气泡气液界面出现的微观结构的研究
- 批准号:
15K13872 - 财政年份:2015
- 资助金额:
$ 21.82万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research