Hollow-core fibre based quantum optical light-atom interface

基于空心光纤的量子光学光原子接口

基本信息

  • 批准号:
    EP/J015857/1
  • 负责人:
  • 金额:
    $ 12.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Since their discovery, about a century ago, the physical laws of quantum mechanics have puzzled researchers and attracted widespread interest. In particular, the philosophical implications for the meaning of reality and objectivity have raised lasting debates. The bone of contention being the concept of entanglement, where two distant objects, upon the act of measurement, appear to agree on random measurement outcomes, although no physical reality could be ascribed to their properties before the measurement and although any communication between them is ruled out by the theory of relativity.In modern days, immense progress has been made in this area, and beyond the vast amount of devices and applications such as lasers and superfluidity, the pure quantum properties of photons and even individual atoms can now be controlled with unprecedented precision. While such a high level of control was first achieved in quantum optics, i.e. the physics of light, the advent of laser cooling enabled physicists also to engineer new quantum states of matter. These research fields were recognized by the award of Physics Nobel prizes in 1997, 2001 and 2005.The field became a spectacular topic of interest when potential applications of entanglement for quantum computing and cryptography were discovered. Devices working with quantum units of information, or qubits, could efficiently solve certain computational problems, simulate quantum dynamics, and provide a means for completely secure communication. An important ingredient for future quantum networks, i.e., linked nodes that are capable of controlling quantum states, will be the ability to interface light and matter. While photons can be easily transported but are very volatile in their very nature, quantum states of matter can be kept, controlled, and designed to interact with each other. A set of small, easily controllable quantum machines can become more powerful by interconnection. The problem of long-distance quantum communication might serve as the prime example. While basic quantum communication devices are already commercially available, current technology is limited to distances of about 150 km due to the noise that is inevitably introduced in any sort of quantum channel. Overcoming this limit will become technically feasible only with nodes that are capable of storing and preserving the transmitted quantum information and performing quantum operations on it. Hence, there is a strong interest in developing light-matter interfaces that fulfil these tasks. Such interfaces also find other applications. The transfer of well-controlled optical states onto matter can serve for precision measurements such as magnetometry, atomic clocks, and spectroscopy. At the same time, new states of light can be engineered or detected, and applications include squeezed light, single photons, frequency conversion, and efficient or even non-destructive photon counting, where the intensity of light can be precisely measured without absorbing it. All of these are much sought-after resources for a range of quantum optical applications.The aim of this project is to design and build a fibre optical light-atom interface. By incorporating techniques from cold-atom physics, we want to build a system based on a micro-fabricated chip with integrated hollow-core photonic crystal fibres. With the help of the chip we will magnetically confine laser cooled, ultracold atoms in the 6 micron sized empty core of these light guiding fibres and let them interact with the light field. This system will allow us to explore new parameter regimes and can become the first demonstration of a long-lived (seconds) quantum memory with very fast switching times. The natural compatibility of the proposed implementation with fibre optical communication will bring quantum communication devices closer to a "real world" implementation.
自从大约世纪前发现量子力学以来,量子力学的物理定律一直困扰着研究人员,并引起了广泛的兴趣。特别是,对现实和客观性的意义的哲学含义引起了持久的争论。争论的焦点是纠缠的概念,两个遥远的物体,在测量的行为,似乎同意随机测量的结果,虽然没有物理现实可以归因于他们的属性之前的测量,虽然他们之间的任何通信被排除在相对论。在现代,在这一领域取得了巨大的进展,除了大量的装置和应用,如激光和超流体,光子甚至单个原子的纯量子特性现在可以以前所未有的精度控制。虽然这种高水平的控制首先是在量子光学中实现的,即光物理学,但激光冷却的出现也使物理学家能够设计新的物质量子态。这些研究领域分别在1997年、2001年和2005年获得了诺贝尔物理学奖。随着纠缠态在量子计算和密码学中的潜在应用的发现,纠缠态成为了一个引人注目的研究热点。使用量子信息单位或量子比特的设备可以有效地解决某些计算问题,模拟量子动力学,并提供一种完全安全的通信手段。未来量子网络的重要组成部分,即,能够控制量子态的链接节点,将能够连接光和物质。虽然光子可以很容易地传输,但在其本质上是非常不稳定的,但物质的量子态可以被保持,控制和设计为相互作用。一组小型的、易于控制的量子机器可以通过互连变得更强大。远距离量子通信的问题可能是最好的例子。虽然基本的量子通信设备已经商用,但由于任何类型的量子信道都不可避免地引入噪声,目前的技术仅限于约150公里的距离。要克服这一限制,只有在节点能够存储和保存传输的量子信息并对其进行量子操作的情况下,才能在技术上可行。因此,人们对开发完成这些任务的光-物质接口有着浓厚的兴趣。这样的接口也有其他应用。将良好控制的光学状态转移到物质上可以用于精密测量,如磁力测量,原子钟和光谱学。与此同时,可以设计或检测新的光状态,应用包括压缩光,单光子,频率转换以及高效甚至非破坏性光子计数,其中光的强度可以被精确测量而不会被吸收。所有这些都是量子光学应用的一系列广受欢迎的资源。该项目的目的是设计和建造一个光纤光-原子界面。通过结合冷原子物理学的技术,我们希望建立一个基于集成空心光子晶体光纤的微制造芯片的系统。在芯片的帮助下,我们将把激光冷却的超冷原子磁限制在这些光导纤维的6微米大小的空芯中,并让它们与光场相互作用。该系统将使我们能够探索新的参数机制,并可能成为具有非常快的切换时间的长寿命(秒)量子存储器的第一个演示。所提出的实现与光纤通信的自然兼容性将使量子通信设备更接近“真实的世界”的实现。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dispersive detection of radio-frequency-dressed states
射频穿戴状态的色散检测
  • DOI:
    10.1103/physreva.97.043416
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jammi S
  • 通讯作者:
    Jammi S
Exciton dynamics in emergent Rydberg lattices
  • DOI:
    10.1103/physreva.88.043436
  • 发表时间:
    2013-10-31
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bettelli, S.;Maxwell, D.;Ates, C.
  • 通讯作者:
    Ates, C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Fernholz其他文献

Thomas Fernholz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Fernholz', 18)}}的其他基金

Hybrid atomic gyroscope
混合原子陀螺仪
  • 批准号:
    EP/Y005260/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
Continuously Monitored Quantum Sensors: Smart Tools and Applications
连续监控的量子传感器:智能工具和应用程序
  • 批准号:
    EP/T027126/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
Holographic Quantum Processing
全息量子处理
  • 批准号:
    EP/K022989/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Distributed gas sensing using hollow core optical fibre
使用空心光纤的分布式气体传感
  • 批准号:
    EP/X011674/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
Distributed gas sensing using hollow core optical fibre
使用空心光纤的分布式气体传感
  • 批准号:
    EP/X012182/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
Low-Latency Fibre Optics Communications using Hollow Core Optical Fibres
使用空心光纤的低延迟光纤通信
  • 批准号:
    2612241
  • 财政年份:
    2021
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Studentship
Hollow core fibre for the mid infrared
中红外空心光纤
  • 批准号:
    2377356
  • 财政年份:
    2016
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Studentship
Rydberg atoms inside hollow-core photonic crystal fibre
空心光子晶体光纤内的里德伯原子
  • 批准号:
    316185019
  • 财政年份:
    2016
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Priority Programmes
Hollow core fibre for the mid infrared
中红外空心光纤
  • 批准号:
    1787353
  • 财政年份:
    2016
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Studentship
New fibre reinforced composite core from recyclate
采用回收材料制成的新型纤维增强复合材料芯材
  • 批准号:
    751809
  • 财政年份:
    2014
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Vouchers
Core-shell Fibre Mat Manufacturing Using Electrospinning for Biomedical Applications
使用静电纺丝制造核壳纤维垫用于生物医学应用
  • 批准号:
    430615-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 12.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of rare-earth-doped large-core photonic bandgap fibre technology for power-scaling at challenging wavelengths
开发稀土掺杂大芯径光子带隙光纤技术,用于在具有挑战性的波长下进行功率缩放
  • 批准号:
    EP/H024174/1
  • 财政年份:
    2010
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
Novel technique for fabrication of large core, high rare earth concentration, photodarkening resistant fibres for high power fibre laser applications
用于高功率光纤激光器应用的大纤芯、高稀土浓度、抗光暗化光纤的新技术制造
  • 批准号:
    EP/E033725/1
  • 财政年份:
    2007
  • 资助金额:
    $ 12.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了