Thermal and Reactive Flow Simulation on High-End Computers

高端计算机上的热流和反应流模拟

基本信息

  • 批准号:
    EP/J016381/2
  • 负责人:
  • 金额:
    $ 6.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Thermal and reactive flows are cross-cutting fundamental disciplines that have found applications in technologies such as aerospace engineering, combustion engines for power generation and propulsion, geothermal energy, solar thermal energy, bioenergy, nanotechnology, chemical engineering and climate science, etc. Research in the field is a prime example where high-end computing (HEC) can have a crucial impact, as the reliability and accuracy of numerical prediction and diagnosis of thermal and reactive flows are directly linked to the computational grid resolution and the size of the time steps. The reason lies with the extremely wide range of time and length scales present in thermal and reactive flows, which are typically turbulent as well. There are 9 to 12 orders of magnitude change between the smallest and the largest length and time scales present in thermal and reactive flows of technical relevance, which should ideally be resolved by experimental measurement or numerical simulation. To study such complex phenomena by experiment alone would be prohibitively expensive and laborious if possible at all. Numerical simulation, on the other hand, offers non-intrusive, virtual "measurement" of all relevant quantities at desired resolution and accuracy, provided sufficient computing power is available. Over the past two decades, the world has first seen gigaflops supercomputers, then teraflops and more recently petaflops machines. The pace of development towards exa-scale HEC platforms has recently quickened. Only last autumn, Tianhe-1A caused a stir by reaching 2.566 petaflops maximum sustained calculation speed, but six months later the K computer achieved an astonishing 8.162 petaflops. At least two HEC machines with 20 petaflops are being built in the world and expected to enter service next year (http://www.top500.org/). The problem is that advance in supercomputing hardware and software, impressive as it appears, has barely kept pace with the research needs. Therefore, frontier research in computational thermal and reactive flows tends to be strongly associated with making use of the latest HEC available. We believe that HEC is a key enabler of cutting-edge research in thermal and reactive flow flows. The main purpose of this application is to secure HEC resources on HECToR and its successors to support funded research projects in the field. These include: (a) K H Luo (P.I.), EPSRC grant No. EP/I016570/1 (09/2011 - 08/2014), "Tackling Combustion Instability in Low-Emission Energy Systems: Mathematical Modelling. Numerical Simulations and Control Algorithms"; (b) K H Luo (P.I.) and R W Eason, EPSRC grant No. EP/I012605/1 (05/2011 - 05/2014), "Laser-Induced Forward Transfer Nano-Printing Process - Multiscale Modelling, Experimental Validation and Optimization"; and (c) N D Sandham (P.I.), on-going LAPCAT II EU/FP7, "Long-term advanced propulsion concepets and technologies". In addition, the widely used SBLI code first developed by the applicants will be extended to incorporate capabilities for reactive flow simulation. By making use of the world-class computing facility HECToR, the above projects will fulfil the objectives of producing significant, world-leading research results. Examples of world-first simulations will include: (a) largest direct numerical simulation of a turbulent premixed flame interacting with acoustic waves (b) lattice Boltzmann simulation of the complete Laser-Induced Forward Transfer (LIFT) process; and (c) large-eddy simulation of a complete nose-to-tail scramjet engine. These projects are of direct interest to large research communities in aerospace engineering, combustion, nanotechnology, high-performance computing and so on, and will involve a dozen UK and EU companies, which will ensure wide and timely dissemination of research results.
热流和反应流是交叉的基础学科,已在航空航天工程、发电和推进的内燃机、地热能、太阳热能、生物能源、纳米技术、化学工程和气候科学等技术中得到应用。该领域的研究是高端计算(HEC)可以产生至关重要影响的一个典型例子,因为 热流和反应流的数值预测和诊断与计算网格分辨率和时间步长直接相关。原因在于热流和反应流中存在极其广泛的时间和长度尺度,这些流通常也是湍流。技术相关的热流和反应流中存在的最小和最大长度和时间尺度之间存在 9 至 12 个数量级的变化,理想情况下应通过实验测量或数值模拟来解决。如果可能的话,仅通过实验来研究如此复杂的现象将是极其昂贵和费力的。另一方面,只要有足够的计算能力,数值模拟就可以以所需的分辨率和精度对所有相关量进行非侵入式虚拟“测量”。在过去的二十年里,世界首先出现了千兆浮点运算的超级计算机,然后是万亿次浮点运算,最近又出现了千万亿次浮点运算的机器。亿级 HEC 平台的开发步伐最近加快了。就在去年秋天,天河一号A因达到2.566 petaflops的最大持续计算速度而引起轰动,但六个月后,K计算机达到了惊人的8.162 petaflops。世界上至少有两台 20 petaflops 的 HEC 机器正在建造中,预计明年投入使用 (http://www.top500.org/)。问题在于,超级计算硬件和软件的进步虽然看起来令人印象深刻,但几乎跟不上研究需求的步伐。因此,计算热流和反应流的前沿研究往往与最新可用的 HEC 的使用密切相关。 我们相信 HEC 是热流和反应流尖端研究的关键推动者。此应用程序的主要目的是确保 HECToR 及其后续产品上的 HEC 资源,以支持该领域资助的研究项目。其中包括: (a) K H Luo (P.I.),EPSRC 拨款号 EP/I016570/1 (09/2011 - 08/2014),“解决低排放能源系统中的燃烧不稳定性:数学建模、数值模拟和控制算法”; (b) K H Luo (P.I.) 和 R W Eason,EPSRC 拨款号 EP/I012605/1 (05/2011 - 05/2014),“激光诱导正向转印纳米打印工艺 - 多尺度建模、实验验证和优化”; (c) N D Sandham(P.I.),正在进行的 LAPCAT II EU/FP7,“长期先进推进概念和技术”。此外,申请人首先开发的广泛使用的SBLI代码将被扩展以纳入反应流模拟的功能。通过利用世界一流的计算设施HECToR,上述项目将实现产生重大、世界领先的研究成果的目标。世界首创的模拟示例包括:(a) 湍流预混火焰与声波相互作用的最大直接数值模拟 (b) 完整激光诱导前向传递 (LIFT) 过程的晶格玻尔兹曼模拟; (c) 完整的从头到尾的超燃冲压发动机的大涡模拟。这些项目与航空航天工程、燃烧、纳米技术、高性能计算等领域的大型研究团体直接感兴趣,并将涉及十几家英国和欧盟公司,这将确保研究成果的广泛和及时传播。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nitric Oxide Formation in H2/CO Syngas Non-premixed Jet Flames
H2/CO 合成气非预混合射流火焰中一氧化氮的形成
  • DOI:
    10.1016/j.egypro.2015.02.004
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dinesh K
  • 通讯作者:
    Dinesh K
Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames
  • DOI:
    10.1016/j.ijhydene.2015.08.068
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    K. Dinesh;J. A. Oijen;K. Luo;Xi Jiang
  • 通讯作者:
    K. Dinesh;J. A. Oijen;K. Luo;Xi Jiang
DNS of Acoustic Receptivity and Breakdown in a Mach 6 Flow over a Generic Forebody
通用前体上马赫 6 流中的声学接收性和故障的 DNS
  • DOI:
    10.2514/6.2018-0348
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cerminara A
  • 通讯作者:
    Cerminara A
Turbulent premixed flames at high Karlovitz numbers under oxy-fuel conditions
氧燃料条件下高卡洛维茨数的湍流预混火焰
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Y
  • 通讯作者:
    Chen Y
Flame structure analysis for turbulent lean premixed syngas spherical flames at elevated pressure levels
高压下湍流贫预混合成气球形火焰的火焰结构分析
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dinesh KKJR
  • 通讯作者:
    Dinesh KKJR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Luo其他文献

Effect of Operating Conditions on the Performance of Gas–Liquid Mixture Roots Pumps
运行条件对气液混合物罗茨泵性能的影响
  • DOI:
    10.3390/en14175361
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Qing Guo;Kai Luo;Daijin Li;Chuang Huang;Kan Qin
  • 通讯作者:
    Kan Qin
A Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater Vehicles
水下航行器部分进气轴流式和径流式涡轮机的比较
  • DOI:
    10.3390/en14051514
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hanwei Wang;Yue Chao;Tian Tang;Kai Luo;Kan Qin
  • 通讯作者:
    Kan Qin
Sustaining Dropwise Condensation on Nickel-plated Copper Surfaces with As-grown Graphene Coatings
用生长的石墨烯涂层在镀镍铜表面上维持滴状冷凝
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Wei Chang;Kai Luo;Pengtao Wang;Chen Li
  • 通讯作者:
    Chen Li
Intestinal microbiology and metabolomics of streptozotocin-induced type 2 diabetes mice by polysaccharide from Cardamine violifolia
碎米花多糖链脲佐菌素诱导的 2 型糖尿病小鼠的肠道微生物学和代谢组学
  • DOI:
    10.1016/j.jff.2022.105251
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zimu Zhang;Qing Zhang;XiuFang Huang;Kai Luo
  • 通讯作者:
    Kai Luo
Ultra-Dense HetNets Meet Big Data: Green Frameworks, Techniques, and Approaches
超密集异构网络遇见大数据:绿色框架、技术和方法
  • DOI:
    10.1109/mcom.2018.1700425
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Yuzhou Li;Yu Zhang;Kai Luo;Tao Jiang;Zan Li;Wei Peng
  • 通讯作者:
    Wei Peng

Kai Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Luo', 18)}}的其他基金

UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
  • 批准号:
    EP/X035875/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
  • 批准号:
    EP/T015233/1
  • 财政年份:
    2021
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Exascale Computing for System-Level Engineering: Design, Optimisation and Resilience
用于系统级工程的百亿亿次计算:设计、优化和弹性
  • 批准号:
    EP/V001531/1
  • 财政年份:
    2020
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Enhancement and Control of Turbulent Reactive Flows via Electrical Fields - A Mesoscopic Perspective
通过电场增强和控制湍流反应流 - 介观视角
  • 批准号:
    EP/S012559/1
  • 财政年份:
    2019
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
  • 批准号:
    EP/R029598/1
  • 财政年份:
    2018
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
HIGH PERFORMANCE COMPUTING SUPPORT FOR UNITED KINGDOM CONSORTIUM ON TURBULENT REACTING FLOWS (UKCTRF)
为英国湍流反应流联盟 (UKCTRF) 提供高性能计算支持
  • 批准号:
    EP/K024876/1
  • 财政年份:
    2014
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
  • 批准号:
    EP/L00030X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Tackling Combustion Instability in Low-Emission Energy Systems: Mathematical Modelling, Numerical Simulations and Control Algorithms
解决低排放能源系统中的燃烧不稳定性:数学建模、数值模拟和控制算法
  • 批准号:
    EP/I016570/2
  • 财政年份:
    2013
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Thermal and Reactive Flow Simulation on High-End Computers
高端计算机上的热流和反应流模拟
  • 批准号:
    EP/J016381/1
  • 财政年份:
    2012
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant
Tackling Combustion Instability in Low-Emission Energy Systems: Mathematical Modelling, Numerical Simulations and Control Algorithms
解决低排放能源系统中的燃烧不稳定性:数学建模、数值模拟和控制算法
  • 批准号:
    EP/I016570/1
  • 财政年份:
    2011
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grant

相似海外基金

BRITE Pivot: Micro-Macro Modeling of Reactive Flow and Rock Weathering Enhanced by Artificial Intelligence
BRITE Pivot:人工智能增强的反应流和岩石风化的微观-宏观建模
  • 批准号:
    2416344
  • 财政年份:
    2024
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Standard Grant
Control of dual displacement fronts by non-Newtonian reactive flow for improved sweep efficiency
通过非牛顿反应流控制双位移前沿以提高波及效率
  • 批准号:
    22KF0132
  • 财政年份:
    2023
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRITE Pivot: Micro-Macro Modeling of Reactive Flow and Rock Weathering Enhanced by Artificial Intelligence
BRITE Pivot:人工智能增强的反应流和岩石风化的微观-宏观建模
  • 批准号:
    2135584
  • 财政年份:
    2022
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Standard Grant
Neural Network-Based Preconditioning of Adaptive Tabulation for Reactive Flow Applications
基于神经网络的反应流应用自适应表格预处理
  • 批准号:
    2154446
  • 财政年份:
    2022
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Standard Grant
Advanced utilization of multiple short-lived reactive species by application of flash flow electrolysis
通过闪流电解先进地利用多种短寿命活性物质
  • 批准号:
    20K15276
  • 财政年份:
    2020
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fingering flow in the subterranean estuary - A multiplier for the iron curtain and reactive transport processes?
地下河口的指流——铁幕和反应性运输过程的倍增器?
  • 批准号:
    428293722
  • 财政年份:
    2019
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Research Grants
Development of high-fidelity large scale simulation software on reactive flow for significant improvement of combustion efficiency
开发高保真大规模反应流模拟软件,显着提高燃烧效率
  • 批准号:
    19KK0097
  • 财政年份:
    2019
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Establishment of the basis for bioscience of short-lived reactive species using a new concept of gas-liquid interfacial plasma with high-speed liquid flow
利用高速液流气液界面等离子体新概念建立短寿命活性物质的生物科学基础
  • 批准号:
    18H03687
  • 财政年份:
    2018
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Control of the reactive species production in liquid by using the plasma-jet turbulence flow and the selective killing of cancer stem cells by plasma activated liquid
利用等离子体射流湍流控制液体中活性物质的产生以及等离子体活化液体选择性杀死癌症干细胞
  • 批准号:
    17K05096
  • 财政年份:
    2017
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of study of reacting liquid flow based on reactive interfacial rheology
基于反应界面流变学的反应液体流动研究进展
  • 批准号:
    16K06068
  • 财政年份:
    2016
  • 资助金额:
    $ 6.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了