Collective strong coupling of light and matter with cold atoms in a ring resonator
光和物质与环形谐振器中的冷原子的集体强耦合
基本信息
- 批准号:EP/J016985/1
- 负责人:
- 金额:$ 11.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical cavities have played a central role in atomic, molecular, and optical physics since the development of the laser. Within such cavities, increased field intensity gives access to a variety of nonlinear optical phenomena, and increased interaction length allows detection of even trace amounts of gases. For large numbers of atoms in small enough cavities, the system enters a regime of collective strong coupling. In this case the atoms and cavity field behave cooperatively, giving rise to a rich nonlinear dynamics.The simplest resonator design comprises a pair of parallel mirrors, but ring geometries involving three or more mirrors are used in a number of important applications. Ring laser gyroscopes form the basis of rotation sensing in navigation systems, and passive ring resonators have been used to measure optical activity in chiral liquids. Here we propose experiments with ultracold gases in an optical ring cavity, operating in the regime of collective strong coupling of atoms and light. This system has applications to laser cooling of molecules, self-organisation, quantum simulation, and precision metrology. The first phase of the experiment aims to understand cavity-enhanced cooling as a way to generalise laser cooling for use with molecules. Preliminary work in this field suggests that spatial self-organisation of atoms plays a crucial role in enhancing the coherent scattering into the cavity mode. Although the majority of theoretical work on this topic has been carried out within the ring geometry, the few existing cavity cooling experiments have utilised standing wave resonators. We will therefore be perfectly placed to investigate proposed advantages of the ring geometry, related to translational invariance and the coherent exchange of momentum between degenerate cavity eigenmodes.In the second phase of the experiment we will perform direct quantum simulation of condensed matter systems. There has been phenomenal success using quantum gases in optical lattice potentials to mimic a variety of solid-state crystalline systems. However one ingredient missing in most of this work is any atomic backaction onto the lattice potential. In typical experiments, the underlying optical lattice is unaffected by the position or motion of the atoms, in contrast with solids and with optical lattices in resonators. Recent experiments with Bose-Einstein condensates in high-finesse cavities have begun to study cavity optomechanics, and a quantum phase transition to a supersolid has been demonstrated. We will exploit the ring geometry to study systems with moving lattices in a regime where atom density modifies the optical potential. This will provide a key testing ground for condensed matter systems where lattice excitations play an important role.
自激光器问世以来,光学谐振腔在原子、分子和光学物理中一直扮演着重要的角色。在这样的空腔内,增加的场强可以获得各种非线性光学现象,增加的相互作用长度可以检测甚至痕量的气体。对于足够小的腔中的大量原子,系统进入集体强耦合状态。最简单的谐振腔设计包括一对平行的反射镜,但是在许多重要的应用中使用包括三个或更多反射镜的环形几何结构。环形激光陀螺仪形成导航系统中旋转感测的基础,并且无源环形谐振器已被用于测量手性液体中的旋光性。在这里,我们提出的实验与超冷气体在光学环形腔,在原子和光的集体强耦合制度。该系统可应用于分子的激光冷却、自组织、量子模拟和精密计量。实验的第一阶段旨在了解腔增强冷却作为一种将激光冷却推广用于分子的方法。在这一领域的初步工作表明,原子的空间自组织在增强相干散射到腔模中起着至关重要的作用。虽然大多数关于这个主题的理论工作都是在环形几何结构中进行的,但现有的几个腔体冷却实验都使用了驻波谐振器。因此,我们将完全处于调查拟议的优势,环几何,有关平移不变性和相干交换之间的动量简并腔eigenmodes.In实验的第二阶段,我们将进行直接量子模拟凝聚态系统。在光学晶格势中使用量子气体来模拟各种固态晶体系统已经取得了惊人的成功。然而,在大多数工作中缺少的一个成分是任何原子对晶格势的反作用。在典型的实验中,底层的光学晶格不受原子的位置或运动的影响,与固体和谐振器中的光学晶格相反。最近在高精细度腔中的玻色-爱因斯坦凝聚实验已经开始研究腔光学力学,并且已经证明了超固体的量子相变。我们将利用环几何来研究原子密度改变光学势的运动晶格系统。这将为晶格激发发挥重要作用的凝聚态系统提供一个关键的试验场。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In situ Raman gain between hyperfine ground states in a potassium magneto-optical trap
钾磁光陷阱中超精细基态之间的原位拉曼增益
- DOI:10.1103/physreva.100.033408
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Harvie G
- 通讯作者:Harvie G
Data supporting the publication "Coherence time of a cold-atom laser below threshold"
支持出版物“冷原子激光低于阈值的相干时间”的数据
- DOI:10.25500/edata.bham.00000542
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Goldwin J
- 通讯作者:Goldwin J
Coherence time of a cold-atom laser below threshold
冷原子激光的相干时间低于阈值
- DOI:10.48550/arxiv.2007.07798
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Harvie G
- 通讯作者:Harvie G
Backaction-driven transport of Bloch oscillating atoms in ring cavities.
环腔中布洛赫振荡原子的反作用驱动传输。
- DOI:10.1103/physrevlett.113.073003
- 发表时间:2014
- 期刊:
- 影响因子:8.6
- 作者:Goldwin J
- 通讯作者:Goldwin J
Collective strong coupling of cold potassium atoms in a ring cavity
- DOI:10.1088/1367-2630/18/11/113043
- 发表时间:2016-08
- 期刊:
- 影响因子:3.3
- 作者:R. Culver;A. Lampis;B. Megyeri;K. Pahwa;L. Mudarikwa;M. Holynski;P. Courteille;J. Goldwin
- 通讯作者:R. Culver;A. Lampis;B. Megyeri;K. Pahwa;L. Mudarikwa;M. Holynski;P. Courteille;J. Goldwin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Goldwin其他文献
Cold atoms in space: community workshop summary and proposed road-map
- DOI:
10.1140/epjqt/s40507-022-00147-w - 发表时间:
2022-11-20 - 期刊:
- 影响因子:5.600
- 作者:
Iván Alonso;Cristiano Alpigiani;Brett Altschul;Henrique Araújo;Gianluigi Arduini;Jan Arlt;Leonardo Badurina;Antun Balaž;Satvika Bandarupally;Barry C. Barish;Michele Barone;Michele Barsanti;Steven Bass;Angelo Bassi;Baptiste Battelier;Charles F. A. Baynham;Quentin Beaufils;Aleksandar Belić;Joel Bergé;Jose Bernabeu;Andrea Bertoldi;Robert Bingham;Sébastien Bize;Diego Blas;Kai Bongs;Philippe Bouyer;Carla Braitenberg;Christian Brand;Claus Braxmaier;Alexandre Bresson;Oliver Buchmueller;Dmitry Budker;Luís Bugalho;Sergey Burdin;Luigi Cacciapuoti;Simone Callegari;Xavier Calmet;Davide Calonico;Benjamin Canuel;Laurentiu-Ioan Caramete;Olivier Carraz;Donatella Cassettari;Pratik Chakraborty;Swapan Chattopadhyay;Upasna Chauhan;Xuzong Chen;Yu-Ao Chen;Maria Luisa Chiofalo;Jonathon Coleman;Robin Corgier;J. P. Cotter;A. Michael Cruise;Yanou Cui;Gavin Davies;Albert De Roeck;Marcel Demarteau;Andrei Derevianko;Marco Di Clemente;Goran S. Djordjevic;Sandro Donadi;Olivier Doré;Peter Dornan;Michael Doser;Giannis Drougakis;Jacob Dunningham;Sajan Easo;Joshua Eby;Gedminas Elertas;John Ellis;David Evans;Pandora Examilioti;Pavel Fadeev;Mattia Fanì;Farida Fassi;Marco Fattori;Michael A. Fedderke;Daniel Felea;Chen-Hao Feng;Jorge Ferreras;Robert Flack;Victor V. Flambaum;René Forsberg;Mark Fromhold;Naceur Gaaloul;Barry M. Garraway;Maria Georgousi;Andrew Geraci;Kurt Gibble;Valerie Gibson;Patrick Gill;Gian F. Giudice;Jon Goldwin;Oliver Gould;Oleg Grachov;Peter W. Graham;Dario Grasso;Paul F. Griffin;Christine Guerlin;Mustafa Gündoğan;Ratnesh K. Gupta;Martin Haehnelt;Ekim T. Hanımeli;Leonie Hawkins;Aurélien Hees;Victoria A. Henderson;Waldemar Herr;Sven Herrmann;Thomas Hird;Richard Hobson;Vincent Hock;Jason M. Hogan;Bodil Holst;Michael Holynski;Ulf Israelsson;Peter Jeglič;Philippe Jetzer;Gediminas Juzeliūnas;Rainer Kaltenbaek;Jernej F. Kamenik;Alex Kehagias;Teodora Kirova;Marton Kiss-Toth;Sebastian Koke;Shimon Kolkowitz;Georgy Kornakov;Tim Kovachy;Markus Krutzik;Mukesh Kumar;Pradeep Kumar;Claus Lämmerzahl;Greg Landsberg;Christophe Le Poncin-Lafitte;David R. Leibrandt;Thomas Lévèque;Marek Lewicki;Rui Li;Anna Lipniacka;Christian Lisdat;Mia Liu;J. L. Lopez-Gonzalez;Sina Loriani;Jorma Louko;Giuseppe Gaetano Luciano;Nathan Lundblad;Steve Maddox;M. A. Mahmoud;Azadeh Maleknejad;John March-Russell;Didier Massonnet;Christopher McCabe;Matthias Meister;Tadej Mežnaršič;Salvatore Micalizio;Federica Migliaccio;Peter Millington;Milan Milosevic;Jeremiah Mitchell;Gavin W. Morley;Jürgen Müller;Eamonn Murphy;Özgür E. Müstecaplıoğlu;Val O’Shea;Daniel K. L. Oi;Judith Olson;Debapriya Pal;Dimitris G. Papazoglou;Elizabeth Pasatembou;Mauro Paternostro;Krzysztof Pawlowski;Emanuele Pelucchi;Franck Pereira dos Santos;Achim Peters;Igor Pikovski;Apostolos Pilaftsis;Alexandra Pinto;Marco Prevedelli;Vishnupriya Puthiya-Veettil;John Quenby;Johann Rafelski;Ernst M. Rasel;Cornelis Ravensbergen;Mirko Reguzzoni;Andrea Richaud;Isabelle Riou;Markus Rothacher;Albert Roura;Andreas Ruschhaupt;Dylan O. Sabulsky;Marianna Safronova;Ippocratis D. Saltas;Leonardo Salvi;Muhammed Sameed;Pandey Saurabh;Stefan Schäffer;Stephan Schiller;Manuel Schilling;Vladimir Schkolnik;Dennis Schlippert;Piet O. Schmidt;Harald Schnatz;Jean Schneider;Ulrich Schneider;Florian Schreck;Christian Schubert;Armin Shayeghi;Nathaniel Sherrill;Ian Shipsey;Carla Signorini;Rajeev Singh;Yeshpal Singh;Constantinos Skordis;Augusto Smerzi;Carlos F. Sopuerta;Fiodor Sorrentino;Paraskevas Sphicas;Yevgeny V. Stadnik;Petruta Stefanescu;Marco G. Tarallo;Silvia Tentindo;Guglielmo M. Tino;Jonathan N. Tinsley;Vincenza Tornatore;Philipp Treutlein;Andrea Trombettoni;Yu-Dai Tsai;Philip Tuckey;Melissa A. Uchida;Tristan Valenzuela;Mathias Van Den Bossche;Ville Vaskonen;Gunjan Verma;Flavio Vetrano;Christian Vogt;Wolf von Klitzing;Pierre Waller;Reinhold Walser;Eric Wille;Jason Williams;Patrick Windpassinger;Ulrich Wittrock;Peter Wolf;Marian Woltmann;Lisa Wörner;André Xuereb;Mohamed Yahia;Efe Yazgan;Nan Yu;Nassim Zahzam;Emmanuel Zambrini Cruzeiro;Mingsheng Zhan;Xinhao Zou;Jure Zupan;Erik Zupanič - 通讯作者:
Erik Zupanič
Jon Goldwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Goldwin', 18)}}的其他基金
相似国自然基金
水稻茎秆粗度和穗粒数多效性基因STRONG1的调控网络与作用机制分析
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
- 批准号:
22KJ0496 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Strong Coupling with Organic Molecules (SCOM-23)
会议:与有机分子的强耦合(SCOM-23)
- 批准号:
2327457 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Exploration of Emergent Functional Properties in Topological Semimetals with Strong Magnetic Coupling
强磁耦合拓扑半金属的涌现功能特性探索
- 批准号:
22KJ0212 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Excellence in Research: Tunable hybrid photonic materials at strong coherent coupling
卓越的研究:强相干耦合的可调谐混合光子材料
- 批准号:
2301350 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Increasing the Rate of Singlet Fission through Strong Coupling
博士后奖学金:MPS-Ascend:通过强耦合提高单线态裂变速率
- 批准号:
2316063 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Fellowship Award
Construction of an innovative photoreaction fields that possess quantum coherent strong coupling and study of its fundamental principle
具有量子相干强耦合的创新光反应场的构建及其基本原理研究
- 批准号:
23H05464 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a novel photocathode under strong coupling conditions for carbon dioxide reduction
开发强耦合条件下用于二氧化碳还原的新型光电阴极
- 批准号:
23K04902 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
- 批准号:
23K13093 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCOLED: Strong-Coupling-Enhanced Nanoparticle Array Organic Light-Emitting Diode
SCOLED:强耦合增强纳米粒子阵列有机发光二极管
- 批准号:
10063313 - 财政年份:2023
- 资助金额:
$ 11.35万 - 项目类别:
EU-Funded