Start the clock: a new direct method to study collisions of electronically excited molecules
启动时钟:研究电子激发分子碰撞的新直接方法
基本信息
- 批准号:EP/J017973/1
- 负责人:
- 金额:$ 68.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the chemistry of the atmosphere, combustion systems and technological plasmas is of great importance in the modern world. A very significant process in these gas-phase environments is the transfer of energy between molecules during collisions. The total amount of internal energy that a molecule possesses is important, but equally if not more important is what form that energy takes. It may be in the form of translational, rotational or vibrational motion of the molecule, or even in the arrangement of the electrons. A large amount of energy may be stored in a rearrangement of the electronic structure of a molecule, producing an electronically excited state. Such excited states occur in energetic environments such as combustion or plasmas, and their decay is what is responsible for the typically observed light emission. The excited states are often also created when molecules are probed in experiments using optical methods. The electronic energy may be re-radiated, but generally not before the molecule has undergone collisions with other gas-phase molecules. This may result in translational, rotational or vibrational energy transfer within the excited electronic state. Significantly, it may also involve either a reaction that removes the excited molecule altogether, or a quenching collision in which the electronic energy is lost to the collision partner.Despite their importance, surprisingly little is known about the fundamental forces involved in collisions of electronically excited molecules. The best way to determine the detailed dynamics of the collisions of such molecules is using a technique called crossed molecular beam (CMB) scattering. In this method, defined beams of different molecules are collided in a vacuum chamber, and the details of their directions of travel and internal energies are observed in some fashion. We will extend this technique previously used for electronic ground state molecules to the collisions of electronically excited molecules, specifically NO, which is an important molecule in the atmosphere and combustion. We will build a new state-of-the-art CMB scattering apparatus, and by using a combination of laser pulses of different wavelengths will prepare NO molecules in their excited state. After these have collided with the target molecules we will probe the scattered molecules with a laser-based detection technique called velocity map ion-imaging, which is capable of accurately measuring their velocities. The laser pulse that prepares the excited NO defines a zero-time for the experiment, and so 'starts the clock' ticking. This will give us much better definition of the experiment than is usual in CMB experiments, and hence higher sensitivity to the scattering dynamics. We will use this sensitivity to study the collisions of NO with simple molecules relevant to combustion and the atmosphere, namely N2, O2 and CO. These are known to show very different quenching and reactive behaviours with excited NO, but little or nothing is known about the forces involved in these interactions. The results from our experiments will be used to deepen our understanding of what is important is directing energy transfer in electronically excited molecules, and will help to drive the development of better theoretical models and calculations, as well as providing information of direct relevance to scientist working in the combustion and atmospheric probing of NO.
了解大气化学、燃烧系统和等离子体技术在现代世界是非常重要的。在这些气相环境中,一个非常重要的过程是碰撞过程中分子之间的能量传递。一个分子拥有的内能总量很重要,但同样重要的是能量的形式。它可能以分子的平动、转动或振动运动的形式存在,甚至以电子的排列形式存在。大量的能量可以储存在分子电子结构的重排中,从而产生电子激发态。这种激发态发生在能量环境中,如燃烧或等离子体,它们的衰变是导致典型观察到的光发射的原因。在实验中使用光学方法探测分子时,通常也会产生激发态。电子能量可以再辐射,但通常在分子与其他气相分子发生碰撞之前不会再辐射。这可能导致激发态内的平动、转动或振动能量传递。值得注意的是,它也可能涉及到一个将被激发的分子完全移除的反应,或者一个电子能量丢失给碰撞伙伴的猝灭碰撞。尽管它们很重要,但令人惊讶的是,人们对电子激发分子碰撞所涉及的基本力知之甚少。确定这种分子碰撞的详细动力学的最好方法是使用一种称为交叉分子束(CMB)散射的技术。在这种方法中,不同分子的确定光束在真空室中碰撞,并以某种方式观察其行进方向和内能的细节。我们将把以前用于电子基态分子的技术扩展到电子激发分子的碰撞,特别是NO,它是大气和燃烧中的重要分子。我们将建立一个新的最先进的CMB散射装置,并通过不同波长激光脉冲的组合来制备处于激发态的NO分子。在它们与目标分子碰撞后,我们将使用一种称为速度图离子成像的激光探测技术探测分散的分子,这种技术能够精确测量它们的速度。准备激发NO的激光脉冲为实验定义了一个零时间,因此“开始时钟”滴答作响。这将给我们提供比通常的CMB实验更好的实验定义,因此对散射动力学具有更高的灵敏度。我们将利用这种灵敏度来研究NO与与燃烧和大气相关的简单分子(即N2、O2和CO)的碰撞。已知这些分子在激发NO时表现出非常不同的猝灭和反应行为,但对这些相互作用中涉及的力知之甚少或一无所知。我们的实验结果将用于加深我们对电子激发分子中指导能量转移的重要性的理解,并将有助于推动更好的理论模型和计算的发展,以及为从事NO燃烧和大气探测工作的科学家提供直接相关的信息。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-intuitive rotational reorientation in collisions of NO(A 2S+) with Ne from direct measurement of a four-vector correlation.
通过直接测量四向量相关性,NO(A 2S ) 与 Ne 碰撞中的非直观旋转重新定向。
- DOI:10.1038/s41557-018-0121-9
- 发表时间:2018
- 期刊:
- 影响因子:21.8
- 作者:Sharples TR
- 通讯作者:Sharples TR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Costen其他文献
Matthew Costen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Costen', 18)}}的其他基金
Reactive Scattering Dynamics at the Gas-Liquid Interface: Bridging the Gap between the Gas-Phase and Solution
气液界面的反应散射动力学:弥合气相和溶液之间的间隙
- 批准号:
EP/M021823/1 - 财政年份:2015
- 资助金额:
$ 68.9万 - 项目类别:
Research Grant
相似国自然基金
基于circA1CF介导Clock乙酰化修饰Bmal1-Lys 537残基探讨调周法
改善卵巢生物钟的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
SE-lncRNA LMAGA协同CLOCK及YAP1促进胃癌亲淋巴结转移机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
m6A甲基转移酶METTL3介导气道上皮细胞生物钟基因CLOCK调控哮喘气道炎症的作用机制
- 批准号:82300037
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Bmal1/Clock介导ARs信号通路对肺叶切除术后房颤的影响及针刺干预作用机制
- 批准号:82374451
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
生物钟基因CLOCK介导肝癌相关成纤维细胞Sema3C分泌促进肿瘤进展的机制研究
- 批准号:2023JJ30752
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
生物钟紊乱通过CLOCK驱动AKT脂酰化修饰导致子痫前期的分子机制研究
- 批准号:82371698
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
电针通过SIRT1介导CLOCK-BMAL1环路调节进食节律和能量代谢改善肥胖的机制研究
- 批准号:82305401
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生物节律转录因子BMAL1::CLOCK对肝癌发生发展的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
生物钟基因Bmal和Clock对番红砗磲行为和生理节律的调控及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of Cell Type-Specific Molecular Rhythm Disruption in Alcohol Use Disorder
细胞类型特异性分子节律破坏在酒精使用障碍中的作用
- 批准号:
10725280 - 财政年份:2023
- 资助金额:
$ 68.9万 - 项目类别:
AI-powered micro-comb lasers: a new approach to transfer portable atomic clock accuracy in integrated photonics
人工智能驱动的微梳激光器:在集成光子学中传输便携式原子钟精度的新方法
- 批准号:
EP/W028344/1 - 财政年份:2023
- 资助金额:
$ 68.9万 - 项目类别:
Fellowship
Modulation of astrocyte-mediated neurotoxicity by NR1D1 in ALS models
ALS 模型中 NR1D1 调节星形胶质细胞介导的神经毒性
- 批准号:
10800001 - 财政年份:2023
- 资助金额:
$ 68.9万 - 项目类别:
Regulation of seizure timing by circadian rhythms and sleep
通过昼夜节律和睡眠调节癫痫发作时间
- 批准号:
10643189 - 财政年份:2023
- 资助金额:
$ 68.9万 - 项目类别:
Mechanisms of Circadian and Synaptic Dysfunction After Repetitive Mild TBI
重复性轻度 TBI 后昼夜节律和突触功能障碍的机制
- 批准号:
10418007 - 财政年份:2022
- 资助金额:
$ 68.9万 - 项目类别:
Disrupted Circadian Regulation of Cell Migration at CNS-Immune Interfaces in Aging and Alzheimer's Disease
衰老和阿尔茨海默病中中枢神经系统免疫界面细胞迁移的昼夜节律调节被破坏
- 批准号:
10515951 - 财政年份:2022
- 资助金额:
$ 68.9万 - 项目类别:
Disrupted Circadian Regulation of Cell Migration at CNS-Immune Interfaces in Aging and Alzheimer's Disease
衰老和阿尔茨海默病中中枢神经系统免疫界面细胞迁移的昼夜节律调节被破坏
- 批准号:
10688103 - 财政年份:2022
- 资助金额:
$ 68.9万 - 项目类别:
Chemical Biology Approaches for Studying Circadian Rhythms
研究昼夜节律的化学生物学方法
- 批准号:
10437920 - 财政年份:2021
- 资助金额:
$ 68.9万 - 项目类别:
Non-transcriptional regulation of circadian physiology
昼夜节律生理学的非转录调节
- 批准号:
10406109 - 财政年份:2021
- 资助金额:
$ 68.9万 - 项目类别:
Chemical Biology Approaches for Studying Circadian Rhythms
研究昼夜节律的化学生物学方法
- 批准号:
10623212 - 财政年份:2021
- 资助金额:
$ 68.9万 - 项目类别:














{{item.name}}会员




