AI-powered micro-comb lasers: a new approach to transfer portable atomic clock accuracy in integrated photonics
人工智能驱动的微梳激光器:在集成光子学中传输便携式原子钟精度的新方法
基本信息
- 批准号:EP/W028344/1
- 负责人:
- 金额:$ 130.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optical frequency combs are lasers with a frequency spectrum composed of a sequence of lines corresponding to precise trains of optical pulses in time. When miniaturised in portable and energy-efficient platforms, these lasers can provide a precisely beating "optical heart" required by transformative quantum technologies, such as portable optical atomic clocks, gravitational sensors, and dual-comb spectrometers. As outlined in the NQTP strategic plan, these technologies can transform our society by revolutionising healthcare, mobility, financial transactions, and next-generation mobile infrastructures.In the last fifteen years, the science of miniaturised frequency combs has reached an impressive level of technological maturity. The established platform towards compact and energy-efficient devices is micro-combs, a class of lasers based on miniaturised nonlinear resonators. While extensive efforts have now brought miniaturisation within grasp, micro-combs remain surprisingly hard to control at the high-power emissions regimes required by energy-demanding applications, such as portable atomic clocks and broadband telecommunications. In all these domains, the micro-comb spectrum should be as broad as possible (i.e., octave-spanning), with spectrum lines possessing specific features (e.g., flatness across telecom bands) while carrying enough optical energy to lock to external references. Meeting these requirements remains particularly challenging in micro-comb platforms, where the ultrafast pulses originate from the interaction and synchronisation of thousands of optical waves. These interactions become increasingly hard to control when approaching high power emissions, leading to chaotic and unpredictable emissions. As a result, state-of-the-art micro-combs are restricted to relatively low optical powers, where nonlinear interactions are easier to tame, and standard stabilisation techniques still apply. This limitation is surprisingly ubiquitous across many laser technologies, where high-energy emission states have remained substantially uncharted territory. In this regard, highly nonlinear lasers are the photonic counterpart of complex systems like the brain, weather and society. In these systems, a large number of interacting elements and a high degree of nonlinearity provide an essential ingredient to produce high-level functionalities. However, complexity also eludes the definition of universal, interpretable models to understand and control the evolution of these systems. Learning how to tame the extreme richness of complex interactions requires a profound paradigm shift in concepts and methodology. This transformation is today one step closer thanks to the impressive advances in Artificial Intelligence (AI) technologies. This project's vision is to bring such a paradigm shift in the field of micro-combs by developing a new class of AI-powered lasers capable of "learning" how to optimise their emission in real-time and in real-life experimental conditions. AI is emerging as an ideal tool to stabilise ultrafast lasers in standard emission regimes, delivering improved performance in a fraction of the time. Nevertheless, driving and maintaining a micro-comb laser into an arbitrary, traditionally unstable emission state requires extending AI predictions with sophisticated physical modelling of the system's internal dynamics not necessarily known a priori. To fill this gap, I will establish and lead an interdisciplinary group of researchers to develop a new methodology based on data-driven discovery, an emerging theoretical framework combining the powerful data-processing capabilities of AI with concepts from dynamical systems and nonlinear control theory. This approach will allow identifying the "hidden" nonlinear effects driving a real-life micro-comb system, opening a unique pathway to apply advanced control strategies and design entirely new generations of micro-combs, inconceivable with existing approach
光频梳是具有由对应于时间上的精确光脉冲串的线序列组成的频谱的激光器。当安装在便携式和节能的平台上时,这些激光器可以提供变革性量子技术所需的精确跳动的“光学心脏”,例如便携式光学原子钟,重力传感器和双梳光谱仪。正如NQTP战略计划所概述的那样,这些技术可以通过彻底改变医疗保健、移动性、金融交易和下一代移动的基础设施来改变我们的社会。在过去的15年里,集成频率梳的科学已经达到了令人印象深刻的技术成熟水平。微型梳是一种基于非线性谐振器的激光器,它是实现紧凑和节能设备的既定平台。虽然广泛的努力现在已经使电子化成为可能,但微梳仍然难以控制高功率辐射制度,这些制度是对能源要求很高的应用所要求的,例如便携式原子钟和宽带电信。在所有这些域中,微梳频谱应该尽可能宽(即,倍频程跨越),其中谱线具有特定特征(例如,跨电信频带的平坦度),同时携带足够的光能以锁定到外部基准。满足这些要求在微梳平台中仍然特别具有挑战性,其中超快脉冲源于数千个光波的相互作用和同步。当接近高功率排放时,这些相互作用变得越来越难以控制,导致混乱和不可预测的排放。因此,最先进的微梳被限制在相对较低的光功率,其中非线性相互作用更容易驯服,并且标准稳定技术仍然适用。令人惊讶的是,这种限制在许多激光技术中普遍存在,其中高能发射态仍然是基本上未知的领域。在这方面,高度非线性激光器是大脑、天气和社会等复杂系统的光子对应物。在这些系统中,大量的相互作用的元素和高度的非线性提供了一个重要的成分,以产生高层次的功能。然而,复杂性也回避了通用的,可解释的模型来理解和控制这些系统的演变的定义。学习如何驯服复杂交互的极端丰富性需要在概念和方法上进行深刻的范式转变。由于人工智能(AI)技术的令人印象深刻的进步,这种转变今天更近了一步。该项目的愿景是通过开发一种新型的人工智能激光器,在微梳领域实现这种范式转变,这种激光器能够“学习”如何在实时和现实实验条件下优化其发射。人工智能正在成为在标准发射机制下稳定超快激光器的理想工具,在很短的时间内提供更好的性能。然而,将微梳激光器驱动和维持在一个任意的、传统上不稳定的发射状态,需要扩展人工智能预测,对系统的内部动态进行复杂的物理建模,而这些物理建模不一定是先验已知的。为了填补这一空白,我将建立并领导一个跨学科的研究小组,开发一种基于数据驱动发现的新方法,这是一种新兴的理论框架,将人工智能强大的数据处理能力与动力系统和非线性控制理论的概念相结合。这种方法将允许识别驱动现实生活中的微梳系统的“隐藏”非线性效应,为应用先进的控制策略和设计全新一代的微梳开辟了一条独特的途径,这是现有方法无法想象的
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlocal bonding of a soliton and a blue-detuned state in a microcomb laser
- DOI:10.1038/s42005-023-01372-0
- 发表时间:2023-09
- 期刊:
- 影响因子:5.5
- 作者:A. Cutrona;V. Cecconi;Pierre-Henry Hanzard;M. Rowley;Debayan Das;Andrew Cooper;L. Peters;L. Olivieri;B. Wetzel;R. Morandotti;S. Chu;B. E. Little;D. J. Moss;J. S. Totero Gongora;M. Peccianti;A. Pasquazi
- 通讯作者:A. Cutrona;V. Cecconi;Pierre-Henry Hanzard;M. Rowley;Debayan Das;Andrew Cooper;L. Peters;L. Olivieri;B. Wetzel;R. Morandotti;S. Chu;B. E. Little;D. J. Moss;J. S. Totero Gongora;M. Peccianti;A. Pasquazi
All-Dielectric Nanophotonics
全电介质纳米光子学
- DOI:10.1016/b978-0-32-395195-1.00011-9
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Totero Gongora J
- 通讯作者:Totero Gongora J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Sebastian Totero Gongora其他文献
Juan Sebastian Totero Gongora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Insect-scale Flapping-Wing Micro Aerial Robots Capable of Self-powered Hover and Agile Maneuvering
职业:昆虫规模扑翼微型空中机器人,具有自供电悬停和敏捷机动能力
- 批准号:
2236708 - 财政年份:2023
- 资助金额:
$ 130.26万 - 项目类别:
Standard Grant
Regenerative Micro-Electrode Peripheral Nerve Interface for Optimized Proprioceptive and Cutaneous specific interfacing
再生微电极周围神经接口,用于优化本体感觉和皮肤特定接口
- 批准号:
10531069 - 财政年份:2022
- 资助金额:
$ 130.26万 - 项目类别:
Regenerative Micro-Electrode Peripheral Nerve Interface for Optimized Proprioceptive and Cutaneous specific interfacing
再生微电极周围神经接口,用于优化本体感觉和皮肤特定接口
- 批准号:
10685499 - 财政年份:2022
- 资助金额:
$ 130.26万 - 项目类别:
Rapid platelet dysfunction detection in whole blood samples using machine learning powered micro-clot imaging.
使用机器学习驱动的微凝块成像快速检测全血样本中的血小板功能障碍。
- 批准号:
10621281 - 财政年份:2021
- 资助金额:
$ 130.26万 - 项目类别:
Rapid platelet dysfunction detection in whole blood samples using machine learning powered micro-clot imaging.
使用机器学习驱动的微凝块成像快速检测全血样本中的血小板功能障碍。
- 批准号:
10505271 - 财政年份:2021
- 资助金额:
$ 130.26万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10661490 - 财政年份:2020
- 资助金额:
$ 130.26万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10358490 - 财政年份:2020
- 资助金额:
$ 130.26万 - 项目类别:
Ultra-high performance and environment-friendly micro-energy harvesters towards self-powered micro/nano-systems for the Internet of Things
超高性能、环保型微能量收集器,面向物联网自供电微/纳米系统
- 批准号:
20K15146 - 财政年份:2020
- 资助金额:
$ 130.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RF-Powered Wireless Pressure Micro-Sensor for Fracking Operation Monitoring
用于监测压裂作业的射频供电无线压力微型传感器
- 批准号:
521995-2017 - 财政年份:2017
- 资助金额:
$ 130.26万 - 项目类别:
Engage Grants Program
Collaborative Research: A Combustion-Powered, Flapping-Wing Micro Air Vehicle
合作研究:燃烧动力扑翼微型飞行器
- 批准号:
1537715 - 财政年份:2015
- 资助金额:
$ 130.26万 - 项目类别:
Standard Grant