Workshop on Triangulations and Mutations
三角测量和变异研讨会
基本信息
- 批准号:EP/K003720/1
- 负责人:
- 金额:$ 2.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many branches of mathematics, a recurring theme is to find a combinatorial object that can be used as a handle to describe a deeper, more fundamental mathematical theory and turn certain questions about it into problems that can actually be calculated. One example is triangulations of surfaces. If we divide a surface, say a sphere or a donut, into triangular regions, then the geometry of the surface (which is potentially complicated) can be understood in terms of which triangular regions are incident to each other (and this is much simpler).Combinatorial objects also occur in the context of generating objects of categories such as strong exceptional sequences or tilting objects, crepant resolutions of singularities, and vanishing cycles of Lefschetz fibrations. Recently, it has been observed that these combinatorial objects have remarkably similar properties which are independent from the branch of mathematics in which the were developed. On one hand, they can be constructed by finding maximal cliques of subobjects that satisfy certain compatibility relations. On the other hand, once one has obtained such a combinatorial object, it is possible to generate more by a process that swaps one of its subobjects for another one.We use mutation as a generic term for these processes which go by different names in different branches of mathematics: Flops, Fomin-Zelevinsky mutations, twists etc. In the case of triangulations of surfaces, we have a particularly simple description: If we remove the border between two neighbouring triangular regions, then we create a quadrangular region, and there is a unique alternative border (linking the two other corners) which divide it into two new triangular regions. This is the fundamental instance of mutation.Clearly, these observations suggest that there must be an underlying mathematical theory that ties all this neatly together, and the purpose of the workshop is to bring together researchers to discuss these questions.
在数学的许多分支中,一个反复出现的主题是找到一个组合对象,它可以作为一个句柄来描述一个更深层次的、更基本的数学理论,并将有关它的某些问题转化为实际上可以计算的问题。一个例子是曲面的三角剖分。如果我们把一个表面,比如说一个球体或一个甜甜圈,分成三角形区域,那么表面的几何形状(这可能很复杂)可以根据哪些三角形区域相互关联来理解(而且这要简单得多)。组合对象也出现在生成类别对象的上下文中,例如强异常序列或倾斜对象、奇异性的可信解析,和莱夫谢茨纤维化的消失周期。最近,已经观察到这些组合对象具有非常相似的性质,这些性质独立于它们发展的数学分支。一方面,它们可以通过寻找满足某些相容关系的子代数的最大团来构造。另一方面,一旦我们得到了这样一个组合对象,就有可能通过将它的一个子对象交换为另一个子对象的过程来生成更多的子对象。我们使用突变作为这些过程的通用术语,这些过程在不同的数学分支中有不同的名称:Flops,Fomin-Zelevinsky突变,twists等。如果我们删除两个相邻三角形区域之间的边界,那么我们创建一个四边形区域,并且有一个唯一的替代边界(连接其他两个角)将其分为两个新的三角形区域。这是突变的基本实例,显然,这些观察结果表明,必须有一个基本的数学理论将所有这些紧密联系在一起,而研讨会的目的就是将研究人员聚集在一起讨论这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Jorgensen其他文献
Recollements of homotopy category and Cohen-Macaulay modules
同伦范畴和 Cohen-Macaulay 模的回顾
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Peter Jorgensen;Kiriko Kato;Kiriko Kato;Kiriko Kato;加藤 希理子;加藤希理子;加藤希理子;Kiriko Kato - 通讯作者:
Kiriko Kato
Triangulated categories of extensions and triangles of recollements
延伸的三角类别和重新排列的三角形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Peter Jorgensen;Kiriko Kato;Kiriko Kato - 通讯作者:
Kiriko Kato
三角圏とホモロジー代数
三角范畴与同调代数
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Peter Jorgensen;Kiriko Kato;Kiriko Kato;Kiriko Kato;加藤 希理子;加藤希理子 - 通讯作者:
加藤希理子
Hard X-ray grazing incidence ptychography: Large field-of-view nanostructure imaging with ultra-high surface sensitivity
硬 X 射线掠入射叠层成像:具有超高表面灵敏度的大视场纳米结构成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:10.4
- 作者:
Peter Jorgensen;Luke Besley;Azat Slyamov;Ana Diaz;M. Guizar‐Sicairos;Michal Kronenberg;Mirko Holler;Chantal Silvestre;Bingdong Chang;Carsten Detlefs;Jens Andreasen - 通讯作者:
Jens Andreasen
Recollements of homotopy categories and Cohen-Macaulay modules
同伦范畴和 Cohen-Macaulay 模的回顾
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Peter Jorgensen;Kiriko Kato;Kiriko Kato;Kiriko Kato;加藤 希理子;加藤希理子;加藤希理子;Kiriko Kato;Kiriko Kato - 通讯作者:
Kiriko Kato
Peter Jorgensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Jorgensen', 18)}}的其他基金
Higher Dimensional Homological Algebra
高维同调代数
- 批准号:
EP/P016014/1 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Research Grant
Understanding the Spatial Patterns of Diversity of Montane Forests in Northern Bolivia
了解玻利维亚北部山地森林多样性的空间格局
- 批准号:
0743457 - 财政年份:2008
- 资助金额:
$ 2.03万 - 项目类别:
Continuing Grant
REVSYS Collaborative Research: Untangling the Passionflower Vines: Phylogeny, Species Diversification, and Character Evolution in Passiflora Ssubg. Decaloba (Passifloraceae)
REVSYS 合作研究:解开西番莲藤蔓:西番莲 Ssubg 的系统发育、物种多样化和性状进化。
- 批准号:
0717115 - 财政年份:2007
- 资助金额:
$ 2.03万 - 项目类别:
Continuing Grant
Botanical Inventory of the Madidi Region, Bolivia
玻利维亚马迪迪地区植物名录
- 批准号:
0101775 - 财政年份:2001
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
相似海外基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Projects
Veering Triangulations and Visualization
转向三角测量和可视化
- 批准号:
2203993 - 财政年份:2022
- 资助金额:
$ 2.03万 - 项目类别:
Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
- 批准号:
2213323 - 财政年份:2022
- 资助金额:
$ 2.03万 - 项目类别:
Fellowship Award
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A study on graph colorings of triangulations and quadrangulations using the method of partial duality
部分对偶法对三角剖分和四边形图形着色的研究
- 批准号:
21K13831 - 财政年份:2021
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
- 批准号:
1943123 - 财政年份:2020
- 资助金额:
$ 2.03万 - 项目类别:
Continuing Grant
Trisections, triangulations and the complexity of manifolds
三等分、三角剖分和流形的复杂性
- 批准号:
DP190102259 - 财政年份:2019
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Projects
Existence of 5-chromatic locally planar triangulations on closed surfaces and the weak Grunbaum's conjecture
闭曲面上五色局部平面三角剖分的存在性及弱格伦鲍姆猜想
- 批准号:
17K14239 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the combinatorics of veering triangulations
关于转向三角测量的组合学
- 批准号:
1936817 - 财政年份:2017
- 资助金额:
$ 2.03万 - 项目类别:
Studentship