Predicting the Volume of Distribution of Drugs and Toxicants with Data Mining Methods

用数据挖掘方法预测药物和毒物的分布量

基本信息

  • 批准号:
    EP/K004948/1
  • 负责人:
  • 金额:
    $ 13.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Paracelsus, a physician in the early 16th century, is credited with the phrase: "All things are poison, and nothing is without poison; only the dose permits something not to be poisonous" (http://en.wikipedia.org/wiki/Paracelsus). Despite significant advances in pharmacology in the last decades, at present it is still very difficult to find good answers to the questions of how much, how often and for how long a drug should be given to a patient, in order to maximize its therapeutic effect and minimize its adverse effects. These problems are the central concern of the related areas of pharmacokinetics and pharmacodynamics. Pharmacokinetics is concerned with how a drug is processed by the body, i.e., the relationship between drug input parameters (e.g. amount of drug in a dose and dose frequency) and the concentration of the drug in the body with time. In contrast, pharmacodynamics is concerned with how a drug affects the body, i.e., the relationship between drug concentration and the therapeutic and adverse effects of the drug with time.This project focuses on an important pharmacokinetics problem: how to estimate the volume of distribution of a drug, which represents the volume into which a drug is distributed once it has entered systemically into the body. Estimating a drug's volume of distribution is important because it predicts the drug's plasma concentration for a given amount of drug in the body and it influences the drug's half-life, which in turn is very important to determine the correct dosage regimen that clinicians should prescribe to patients.This project aims at developing new computational data mining methods to predict the volume of distribution of drugs. The data mining context for this project is the regression task, where the system is given a set of instances representing a set of objects, where each instance consists of a target (response) attribute (or dependent variable) and a set of predictor attributes (features or independent variables) describing an object. Then the system discovers a regression model that predicts the value of the target attribute for an instance based on the values of its predictor attributes. In this project, the objects to be classified will be chemical compounds or medical drugs, the target attribute to be predicted will be a drug's volume of distribution and the predictor attributes will refer to several types of molecular and physicochemical properties of drugs. The data mining methods to be developed in the project will be compared against traditional data analysis methods used for predicting a drug's volume of distribution.
世纪初的一位医生帕拉塞尔苏斯(Paracelsus)有这样一句话:“所有的东西都是毒药,没有什么是无毒的;只有剂量才能让某些东西无毒”(http://en.wikipedia.org/wiki/Paracelsus)。尽管在过去几十年中药理学取得了重大进展,但目前仍然很难找到药物应该给予患者多少,多久和多长时间的问题的好答案,以最大限度地提高其治疗效果并尽量减少其不良反应。这些问题是药代动力学和药效学相关领域关注的中心问题。药代动力学涉及药物如何被身体加工,即,药物输入参数(例如剂量中的药物量和给药频率)与体内药物浓度随时间的关系。相比之下,药效学关注的是药物如何影响身体,即,药物浓度与药物治疗和副作用随时间的关系。该项目侧重于一个重要的药代动力学问题:如何估计药物的分布容积,它代表药物一旦进入全身进入体内后分布的体积。药物分布容积的估计是非常重要的,因为它可以预测药物在体内的血药浓度,并影响药物的半衰期,这反过来又是非常重要的,以确定正确的剂量方案,临床医生应该处方给病人。本项目旨在开发新的计算数据挖掘方法来预测药物的分布容积。该项目的数据挖掘上下文是回归任务,其中系统被赋予一组代表一组对象的实例,其中每个实例由一个目标(响应)属性(或因变量)和一组描述对象的预测器属性(特征或自变量)组成。然后,系统发现一个回归模型,该模型基于实例的预测器属性的值来预测该实例的目标属性的值。在这个项目中,待分类的对象将是化学化合物或医疗药物,待预测的目标属性将是药物的分布体积,预测属性将是指药物的几种类型的分子和物理化学性质。将在该项目中开发的数据挖掘方法与用于预测药物分布量的传统数据分析方法进行比较。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.
使用预测的组织使用基于决策树的回归方法来预测分布的体积:等离子体分配系数。
  • DOI:
    10.1186/s13321-015-0054-x
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Freitas AA;Limbu K;Ghafourian T
  • 通讯作者:
    Ghafourian T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Freitas其他文献

11th German Conference on Chemoinformatics (GCC 2015)
  • DOI:
    10.1186/s13321-016-0119-5
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Uli Fechner;Chris de Graaf;Andrew E. Torda;Stefan Güssregen;Andreas Evers;Hans Matter;Gerhard Hessler;Nicola J. Richmond;Peter Schmidtke;Marwin H. S. Segler;Mark P. Waller;Stefanie Pleik;Joan-Emma Shea;Zachary Levine;Ryan Mullen;Karina van den Broek;Matthias Epple;Hubert Kuhn;Andreas Truszkowski;Achim Zielesny;Johannes (Hans) Fraaije;Ruben Serral Gracia;Stefan M. Kast;Krishna C. Bulusu;Andreas Bender;Abraham Yosipof;Oren Nahum;Hanoch Senderowitz;Timo Krotzky;Robert Schulz;Gerhard Wolber;Stefan Bietz;Matthias Rarey;Markus O. Zimmermann;Andreas Lange;Manuel Ruff;Johannes Heidrich;Ionut Onlia;Thomas E. Exner;Frank M. Boeckler;Marcel Bermudez;Dzmitry S. Firaha;Oldamur Hollóczki;Barbara Kirchner;Christofer S. Tautermann;Andrea Volkamer;Sameh Eid;Samo Turk;Friedrich Rippmann;Simone Fulle;Noureldin Saleh;Giorgio Saladino;Francesco L. Gervasio;Elke Haensele;Lee Banting;David C. Whitley;Jana Sopkova-de Oliveira Santos;Ronan Bureau;Timothy Clark;Achim Sandmann;Harald Lanig;Patrick Kibies;Jochen Heil;Franziska Hoffgaard;Roland Frach;Julian Engel;Steven Smith;Debjit Basu;Daniel Rauh;Oliver Kohlbacher;Frank M. Boeckler;Jonathan W. Essex;Michael S. Bodnarchuk;Gregory A. Ross;Arndt R. Finkelmann;Andreas H. Göller;Gisbert Schneider;Tamara Husch;Christoph Schütter;Andrea Balducci;Martin Korth;Fidele Ntie-Kang;Stefan Günther;Wolfgang Sippl;Luc Meva’a Mbaze;Fidele Ntie-Kang;Conrad V. Simoben;Lydia L. Lifongo;Fidele Ntie-Kang;Philip Judson;Jiří Barilla;Miloš V. Lokajíček;Hana Pisaková;Pavel Simr;Natalia Kireeva;Alexandre Petrov;Denis Ostroumov;Vitaly P. Solovev;Vladislav S. Pervov;Nils-Ole Friedrich;Kai Sommer;Matthias Rarey;Johannes Kirchmair;Eugen Proschak;Julia Weber;Daniel Moser;Lena Kalinowski;Janosch Achenbach;Mark Mackey;Tim Cheeseright;Gerrit Renner;Gerrit Renner;Torsten C. Schmidt;Jürgen Schram;Marion Egelkraut-Holtus;Albert van Oeyen;Tuomo Kalliokoski;Denis Fourches;Akachukwu Ibezim;Chika J. Mbah;Umale M. Adikwu;Ngozi J. Nwodo;Alexander Steudle;Brian B. Masek;Stephan Nagy;David Baker;Fred Soltanshahi;Roman Dorfman;Karen Dubrucq;Hitesh Patel;Oliver Koch;Florian Mrugalla;Stefan M. Kast;Qurrat U. Ain;Julian E. Fuchs;Robert M. Owen;Kiyoyuki Omoto;Rubben Torella;David C. Pryde;Robert Glen;Andreas Bender;Petr Hošek;Vojtěch Spiwok;Lewis H. Mervin;Ian Barrett;Mike Firth;David C. Murray;Lisa McWilliams;Qing Cao;Ola Engkvist;Dawid Warszycki;Marek Śmieja;Andrzej J. Bojarski;Natalia Aniceto;Alex Freitas;Taravat Ghafourian;Guido Herrmann;Valentina Eigner-Pitto;Alexandra Naß;Rafał Kurczab;Andrzej J. Bojarski;Andreas Lange;Marcel B. Günther;Susanne Hennig;Felix M. Büttner;Christoph Schall;Adrian Sievers-Engler;Francesco Ansideri;Pierre Koch;Thilo Stehle;Stefan Laufer;Frank M. Böckler;Barbara Zdrazil;Floriane Montanari;Gerhard F. Ecker;Christoph Grebner;Anders Hogner;Johan Ulander;Karl Edman;Victor Guallar;Christian Tyrchan;Johan Ulander;Christian Tyrchan;Wolfgang Klute;Fredrik Bergström;Christian Kramer;Quoc Dat Nguyen;Roland Frach;Patrick Kibies;Steven Strohfeldt;Saraphina Böttcher;Tim Pongratz;Dominik Horinek;Stefan M. Kast;Bernd Rupp;Raed Al-Yamori;Michael Lisurek;Ronald Kühne;Filipe Furtado;Karina van den Broek;Ludger Wessjohann;Miriam Mathea;Knut Baumann;Siti Zuraidah Mohamad-Zobir;Xianjun Fu;Tai-Ping Fan;Andreas Bender;Maximilian A. Kuhn;Christoph A. Sotriffer;Azedine Zoufir;Xitong Li;Lewis Mervin;Ellen Berg;Mark Polokoff;Wolf D. Ihlenfeldt;Wolf D. Ihlenfeldt;Jette Pretzel;Zayan Alhalabi;Robert Fraczkiewicz;Marvin Waldman;Robert D. Clark;Neem Shaikh;Prabha Garg;Alexander Kos;Hans-Jürgen Himmler;Achim Sandmann;Christophe Jardin;Heinrich Sticht;Thomas B. Steinbrecher;Markus Dahlgren;Daniel Cappel;Teng Lin;Lingle Wang;Goran Krilov;Robert Abel;Richard Friesner;Woody Sherman;Ina A. Pöhner;Joanna Panecka;Rebecca C. Wade;Stefan Bietz;Karen T. Schomburg;Matthias Hilbig;Matthias Rarey;Christian Jäger;Vivien Wieczorek;Lance M. Westerhoff;Oleg Y. Borbulevych;Hans-Ulrich Demuth;Mirko Buchholz;Denis Schmidt;Thomas Rickmeyer;Timo Krotzky;Peter Kolb;Sumit Mittal;Elsa Sánchez-García;Mauro S. Nogueira;Tiago B. Oliveira;Fernando B. da Costa;Thomas J. Schmidt
  • 通讯作者:
    Thomas J. Schmidt
Machine learning methods applied to risk adjustment of cumulative sum chart methodology to audit free flap outcomes after head and neck surgery.
机器学习方法应用于累积总和图方法的风险调整,以审核头颈手术后游离皮瓣的结果。
Fair Feature Selection: A Comparison of Multi-Objective Genetic Algorithms
公平特征选择:多目标遗传算法的比较
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Brookhouse;Alex Freitas
  • 通讯作者:
    Alex Freitas
Advancements and challenges in using AI for biomarker detection in early Alzheimer’s disease
在将人工智能用于早期阿尔茨海默病生物标志物检测方面的进展与挑战
  • DOI:
    10.1016/j.drudis.2025.104415
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Iman Beheshti;Benedict C. Albensi;Alex Freitas;Taravat Ghafourian
  • 通讯作者:
    Taravat Ghafourian

Alex Freitas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Freitas', 18)}}的其他基金

Machine Learning to Unravel Anti-Ageing Compounds
机器学习揭示抗衰老化合物
  • 批准号:
    BB/V007971/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Research Grant
A Synergistic Integration of Natural and Artificial Immunology for the Prediction of Hierarchical Protein Functions
自然免疫学和人工免疫学的协同整合用于预测分层蛋白质功能
  • 批准号:
    EP/D501377/1
  • 财政年份:
    2006
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Research Grant

相似海外基金

Model-based assessment of cardiac adipose tissue volume and distribution
基于模型的心脏脂肪组织体积和分布评估
  • 批准号:
    10045350
  • 财政年份:
    2020
  • 资助金额:
    $ 13.21万
  • 项目类别:
in silico prediction of volume of distribution using fraction unbound in plasma
使用血浆中未结合的分数在计算机上预测分布体积
  • 批准号:
    19K16436
  • 财政年份:
    2019
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluation of fluid volume status by initial distribution volume of glucose and its application for the management of sepsis
通过葡萄糖初始分布体积评估液体容量状态及其在脓毒症治疗中的应用
  • 批准号:
    18K08845
  • 财政年份:
    2018
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a method of initial distribution volume of glucose to evaluate body-fluid status and its application for severe sepsis
葡萄糖初始分布容积评价体液状态方法的建立及其在严重脓毒症中的应用
  • 批准号:
    15K10529
  • 财政年份:
    2015
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of Thermodynamic Non-Equilibrium Prediction Model for Frozen Water Volume Based on Probability Distribution of Supercooling
基于过冷概率分布的结冰水量热力学非平衡预测模型的建立
  • 批准号:
    15K06319
  • 财政年份:
    2015
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Volume and distribution of body fat and lipoprotein subclasses
身体脂肪和脂蛋白亚类的体积和分布
  • 批准号:
    25650160
  • 财政年份:
    2013
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The distribution of volume in high-dimensional convex bodies
高维凸体中的体积分布
  • 批准号:
    376490-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
The distribution of volume in high-dimensional convex bodies
高维凸体中的体积分布
  • 批准号:
    376490-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
The distribution of volume in high-dimensional convex bodies
高维凸体中的体积分布
  • 批准号:
    376490-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
Free volume distribution at polymer-solid interfaces
聚合物-固体界面处的自由体积分布
  • 批准号:
    67970895
  • 财政年份:
    2008
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了