A Synergistic Integration of Natural and Artificial Immunology for the Prediction of Hierarchical Protein Functions
自然免疫学和人工免疫学的协同整合用于预测分层蛋白质功能
基本信息
- 批准号:EP/D501377/1
- 负责人:
- 金额:$ 55.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At present biologists are producing very large amounts of data about genes, as a result of a number of automated experiments. A large part of this data refers to proteins, which are the products made by genes. That is, one can think of the genome (the entire set of genes of an organism) as an, encoded text that is decoded to produce proteins. Genes are passive elements, but proteins are active elements, i.e. they perform a variety of functions which are essential to the survival of any organism. The very large amount of data about protein functions currently available is very valuable, because it can potentially lead to a better understanding and treatment of diseases, design of more effective medical drugs, etc. However, in order to harvest the potential of this large amount of data, we need to use intelligent data analysis (or data mining ) techniques that mine (analyse) the data and transform it into useful knowledge, e.g., knowledge specifying which kinds of protein functions are more related to a given kind of disease.This project is inter-disciplinary, because it integrates biology and computer science. From a biology point of view, the project will focus on predicting the functions of a very important kind of protein, which is the target for a large number of medical drugs on the market. From a computer science point of view, the general goal of the project is to automatically discover knowledge from biological data, using intelligent data mining techniques implemented in a computer. In particular, this project will use one kind of intelligent data mining technique called artificial immune systems , which are essentially computer programs that work in a way inspired by the natural immune system. The latter is actually a very sophisticated system, evolved by nature, that allows our body to identify and fight a number of pathogens and invaders. It turns out that the natural immune system is very clever in recognising a very large number of harmful body invaders and developing an appropriate immune response for each kind of invader. The immune system exihibits many interesting properties such as learning, adaptation, and memory of invaders recognised in the past (which speeds up the immune response when the same invader is encountered again). The challenge is to identify which of the many properties of the natural immune system are suitable as an inspiration to design an intelligent artificial immune system for the problem of mining protein data. In order to address this challenge, this project will involve collaboration between computer scientists and biologists. The project will develop a computational model (a kind of computer simulation ) of some properties of the natural immune system, which will allows us to better understand that complex system. This understanding will be used to develop a novel data mining computer program inspired by the natural immune system. These two developments - the computational model and the data mining program - will be done in parallel and with a lot of feedback and interaction between the corresponding research teams, leading to novel contributions to both natural immunology and computer science.
目前,生物学家通过大量的自动化实验产生了大量关于基因的数据。这些数据中有很大一部分涉及蛋白质,蛋白质是基因制造的产物。也就是说,人们可以将基因组(生物体的整套基因)视为一种编码文本,解码后产生蛋白质。基因是被动的元素,但蛋白质是主动的元素,也就是说,它们执行对任何生物体的生存至关重要的各种功能。目前可获得的关于蛋白质功能的非常大量的数据是非常有价值的,因为它可以潜在地导致更好地理解和治疗疾病,设计更有效的医疗药物等。然而,为了收获这些大量数据的潜力,我们需要使用智能数据分析。(或数据挖掘)技术,挖掘(分析)数据并将其转换为有用的知识,例如,知识指定哪种蛋白质的功能与某种疾病更相关。这个项目是跨学科的,因为它整合了生物学和计算机科学。从生物学的角度来看,该项目将专注于预测一种非常重要的蛋白质的功能,这是市场上大量医疗药物的目标。从计算机科学的角度来看,该项目的总体目标是使用计算机中实现的智能数据挖掘技术,从生物数据中自动发现知识。特别是,该项目将使用一种称为人工免疫系统的智能数据挖掘技术,它本质上是受自然免疫系统启发的计算机程序。后者实际上是一个非常复杂的系统,由自然进化而来,使我们的身体能够识别和对抗一些病原体和入侵者。事实证明,天然免疫系统非常聪明,能够识别大量有害的身体入侵者,并为每种入侵者开发适当的免疫反应。免疫系统表现出许多有趣的特性,如学习、适应和对过去识别的入侵者的记忆(当再次遇到相同的入侵者时,这会加快免疫反应)。挑战在于确定自然免疫系统的许多特性中哪些适合作为设计智能人工免疫系统的灵感,以解决挖掘蛋白质数据的问题。为了应对这一挑战,该项目将涉及计算机科学家和生物学家之间的合作。该项目将开发一个自然免疫系统某些特性的计算模型(一种计算机模拟),这将使我们能够更好地理解这个复杂的系统。这种理解将被用来开发一种受自然免疫系统启发的新型数据挖掘计算机程序。这两个发展-计算模型和数据挖掘程序-将并行进行,并在相应的研究团队之间进行大量的反馈和互动,从而为自然免疫学和计算机科学做出新的贡献。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An interdisciplinary perspective on artificial immune systems
- DOI:10.1007/s12065-007-0004-2
- 发表时间:2008-01
- 期刊:
- 影响因子:2.6
- 作者:J. Timmis;P. Andrews;Nick D. L. Owens;Edward Clark
- 通讯作者:J. Timmis;P. Andrews;Nick D. L. Owens;Edward Clark
GPCRTree: online hierarchical classification of GPCR function.
- DOI:10.1186/1756-0500-1-67
- 发表时间:2008-08-21
- 期刊:
- 影响因子:1.8
- 作者:Davies MN;Secker A;Halling-Brown M;Moss DS;Freitas AA;Timmis J;Clark E;Flower DR
- 通讯作者:Flower DR
Alignment-Independent Techniques for Protein Classification
- DOI:10.2174/157016408786733770
- 发表时间:2008-12-01
- 期刊:
- 影响因子:0.8
- 作者:Davies, Matthew N.;Secker, Andrew;Flower, Darren R.
- 通讯作者:Flower, Darren R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Freitas其他文献
11th German Conference on Chemoinformatics (GCC 2015)
- DOI:
10.1186/s13321-016-0119-5 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Uli Fechner;Chris de Graaf;Andrew E. Torda;Stefan Güssregen;Andreas Evers;Hans Matter;Gerhard Hessler;Nicola J. Richmond;Peter Schmidtke;Marwin H. S. Segler;Mark P. Waller;Stefanie Pleik;Joan-Emma Shea;Zachary Levine;Ryan Mullen;Karina van den Broek;Matthias Epple;Hubert Kuhn;Andreas Truszkowski;Achim Zielesny;Johannes (Hans) Fraaije;Ruben Serral Gracia;Stefan M. Kast;Krishna C. Bulusu;Andreas Bender;Abraham Yosipof;Oren Nahum;Hanoch Senderowitz;Timo Krotzky;Robert Schulz;Gerhard Wolber;Stefan Bietz;Matthias Rarey;Markus O. Zimmermann;Andreas Lange;Manuel Ruff;Johannes Heidrich;Ionut Onlia;Thomas E. Exner;Frank M. Boeckler;Marcel Bermudez;Dzmitry S. Firaha;Oldamur Hollóczki;Barbara Kirchner;Christofer S. Tautermann;Andrea Volkamer;Sameh Eid;Samo Turk;Friedrich Rippmann;Simone Fulle;Noureldin Saleh;Giorgio Saladino;Francesco L. Gervasio;Elke Haensele;Lee Banting;David C. Whitley;Jana Sopkova-de Oliveira Santos;Ronan Bureau;Timothy Clark;Achim Sandmann;Harald Lanig;Patrick Kibies;Jochen Heil;Franziska Hoffgaard;Roland Frach;Julian Engel;Steven Smith;Debjit Basu;Daniel Rauh;Oliver Kohlbacher;Frank M. Boeckler;Jonathan W. Essex;Michael S. Bodnarchuk;Gregory A. Ross;Arndt R. Finkelmann;Andreas H. Göller;Gisbert Schneider;Tamara Husch;Christoph Schütter;Andrea Balducci;Martin Korth;Fidele Ntie-Kang;Stefan Günther;Wolfgang Sippl;Luc Meva’a Mbaze;Fidele Ntie-Kang;Conrad V. Simoben;Lydia L. Lifongo;Fidele Ntie-Kang;Philip Judson;Jiří Barilla;Miloš V. Lokajíček;Hana Pisaková;Pavel Simr;Natalia Kireeva;Alexandre Petrov;Denis Ostroumov;Vitaly P. Solovev;Vladislav S. Pervov;Nils-Ole Friedrich;Kai Sommer;Matthias Rarey;Johannes Kirchmair;Eugen Proschak;Julia Weber;Daniel Moser;Lena Kalinowski;Janosch Achenbach;Mark Mackey;Tim Cheeseright;Gerrit Renner;Gerrit Renner;Torsten C. Schmidt;Jürgen Schram;Marion Egelkraut-Holtus;Albert van Oeyen;Tuomo Kalliokoski;Denis Fourches;Akachukwu Ibezim;Chika J. Mbah;Umale M. Adikwu;Ngozi J. Nwodo;Alexander Steudle;Brian B. Masek;Stephan Nagy;David Baker;Fred Soltanshahi;Roman Dorfman;Karen Dubrucq;Hitesh Patel;Oliver Koch;Florian Mrugalla;Stefan M. Kast;Qurrat U. Ain;Julian E. Fuchs;Robert M. Owen;Kiyoyuki Omoto;Rubben Torella;David C. Pryde;Robert Glen;Andreas Bender;Petr Hošek;Vojtěch Spiwok;Lewis H. Mervin;Ian Barrett;Mike Firth;David C. Murray;Lisa McWilliams;Qing Cao;Ola Engkvist;Dawid Warszycki;Marek Śmieja;Andrzej J. Bojarski;Natalia Aniceto;Alex Freitas;Taravat Ghafourian;Guido Herrmann;Valentina Eigner-Pitto;Alexandra Naß;Rafał Kurczab;Andrzej J. Bojarski;Andreas Lange;Marcel B. Günther;Susanne Hennig;Felix M. Büttner;Christoph Schall;Adrian Sievers-Engler;Francesco Ansideri;Pierre Koch;Thilo Stehle;Stefan Laufer;Frank M. Böckler;Barbara Zdrazil;Floriane Montanari;Gerhard F. Ecker;Christoph Grebner;Anders Hogner;Johan Ulander;Karl Edman;Victor Guallar;Christian Tyrchan;Johan Ulander;Christian Tyrchan;Wolfgang Klute;Fredrik Bergström;Christian Kramer;Quoc Dat Nguyen;Roland Frach;Patrick Kibies;Steven Strohfeldt;Saraphina Böttcher;Tim Pongratz;Dominik Horinek;Stefan M. Kast;Bernd Rupp;Raed Al-Yamori;Michael Lisurek;Ronald Kühne;Filipe Furtado;Karina van den Broek;Ludger Wessjohann;Miriam Mathea;Knut Baumann;Siti Zuraidah Mohamad-Zobir;Xianjun Fu;Tai-Ping Fan;Andreas Bender;Maximilian A. Kuhn;Christoph A. Sotriffer;Azedine Zoufir;Xitong Li;Lewis Mervin;Ellen Berg;Mark Polokoff;Wolf D. Ihlenfeldt;Wolf D. Ihlenfeldt;Jette Pretzel;Zayan Alhalabi;Robert Fraczkiewicz;Marvin Waldman;Robert D. Clark;Neem Shaikh;Prabha Garg;Alexander Kos;Hans-Jürgen Himmler;Achim Sandmann;Christophe Jardin;Heinrich Sticht;Thomas B. Steinbrecher;Markus Dahlgren;Daniel Cappel;Teng Lin;Lingle Wang;Goran Krilov;Robert Abel;Richard Friesner;Woody Sherman;Ina A. Pöhner;Joanna Panecka;Rebecca C. Wade;Stefan Bietz;Karen T. Schomburg;Matthias Hilbig;Matthias Rarey;Christian Jäger;Vivien Wieczorek;Lance M. Westerhoff;Oleg Y. Borbulevych;Hans-Ulrich Demuth;Mirko Buchholz;Denis Schmidt;Thomas Rickmeyer;Timo Krotzky;Peter Kolb;Sumit Mittal;Elsa Sánchez-García;Mauro S. Nogueira;Tiago B. Oliveira;Fernando B. da Costa;Thomas J. Schmidt - 通讯作者:
Thomas J. Schmidt
Machine learning methods applied to risk adjustment of cumulative sum chart methodology to audit free flap outcomes after head and neck surgery.
机器学习方法应用于累积总和图方法的风险调整,以审核头颈手术后游离皮瓣的结果。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
D. Tighe;J. McMahon;C. Schilling;M. Ho;Simon Provost;Alex Freitas - 通讯作者:
Alex Freitas
Fair Feature Selection: A Comparison of Multi-Objective Genetic Algorithms
公平特征选择:多目标遗传算法的比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Brookhouse;Alex Freitas - 通讯作者:
Alex Freitas
Advancements and challenges in using AI for biomarker detection in early Alzheimer’s disease
在将人工智能用于早期阿尔茨海默病生物标志物检测方面的进展与挑战
- DOI:
10.1016/j.drudis.2025.104415 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.500
- 作者:
Iman Beheshti;Benedict C. Albensi;Alex Freitas;Taravat Ghafourian - 通讯作者:
Taravat Ghafourian
Alex Freitas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Freitas', 18)}}的其他基金
Machine Learning to Unravel Anti-Ageing Compounds
机器学习揭示抗衰老化合物
- 批准号:
BB/V007971/1 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
Predicting the Volume of Distribution of Drugs and Toxicants with Data Mining Methods
用数据挖掘方法预测药物和毒物的分布量
- 批准号:
EP/K004948/1 - 财政年份:2013
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
相似海外基金
Improving natural capital asset monitoring through 5G enabled multi-sensor integration
通过 5G 支持的多传感器集成改善自然资本资产监控
- 批准号:
10055099 - 财政年份:2023
- 资助金额:
$ 55.32万 - 项目类别:
CR&D Bilateral
Multimodal Sensory Integration in Orbitofrontal Cortex during Natural Reward Seeking
自然奖励寻求过程中眶额皮层的多模态感觉整合
- 批准号:
10671455 - 财政年份:2022
- 资助金额:
$ 55.32万 - 项目类别:
Multimodal Sensory Integration in Orbitofrontal Cortex during Natural Reward Seeking
自然奖励寻求过程中眶额皮层的多模态感觉整合
- 批准号:
10383032 - 财政年份:2022
- 资助金额:
$ 55.32万 - 项目类别:
Integration of microbial, stable isotope, and modeling tools to identify natural and enhanced pollutant bioattenuation processes at complex contaminated sites
整合微生物、稳定同位素和建模工具,以识别复杂污染场地的自然和增强的污染物生物衰减过程
- 批准号:
575243-2022 - 财政年份:2022
- 资助金额:
$ 55.32万 - 项目类别:
Alliance Grants
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10458753 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10624840 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10616027 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10770875 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Targeting Health Disparities through Housing Redevelopment: A Natural Experiment of Housing Quality, Stability, and Economic Integration
通过住房重建消除健康差距:住房质量、稳定性和经济一体化的自然实验
- 批准号:
10296767 - 财政年份:2021
- 资助金额:
$ 55.32万 - 项目类别:
Quantifying rates of CO2 dissolution in U.S. natural CO2 reservoirs through integration of noble gas and 3D reservoir modelling techniques
通过集成稀有气体和 3D 储层建模技术来量化美国天然 CO2 储层中 CO2 溶解速率
- 批准号:
2292177 - 财政年份:2019
- 资助金额:
$ 55.32万 - 项目类别:
Studentship