Boiling in Microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes
微通道沸腾:高热通量设备闭环冷却系统集成设计
基本信息
- 批准号:EP/K011502/1
- 负责人:
- 金额:$ 53.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current developments and future trends in small-scale devices used in a variety of industries such as electronic equipment and micro-process and refrigeration systems, place an increasing demand for removing higher thermal loads from small areas. In some cases further developments are simply not possible unless the problem of providing adequate cooling is resolved. The progression from air to liquid and specifically flow boiling to transfer the high heat fluxes generated is thus the only possible way forward. Evaporative cooling can, not only transfer these loads but also offer greater temperature uniformity since the working fluid can be (in a carefully designed system) at a constant saturation temperature. The consideration of microchannel flow boiling processes has been made possible by developments in microfabrication techniques both in metals and substances such as silicon. However, there still remain fundamental fluid flow and heat transfer related questions that need to be addressed before a wider use of these micro heat exchangers is possible in industry. The specific challenges that will be researched - both fundamental and practical in nature - include flow instabilities and mal-distribution which are the result of interaction between the system manifolds and the external circuit. These can lead to flow reversal and dry-out in the heat exchanger with subsequent drastic reduction in heat transfer rates. The understanding of the fundamental physical phenomena and their relevance to industrial designs is one of the focal points and constitutes one of the major challenges of the proposed research. The effect of other parameters such as inlet sub-cooling, which again relates not only to the micro-heat exchanger itself but also to the overall design, will be addressed along with material/surface characteristics through the use of both metallic and silicon microchannels. The work proposed will include carefully contacted detailed experiments measuring relevant parameters such as local heat flux, temperature and pressure combined with flow visualization through industrially available and purposely developed and manufactured sensors. The research teams will not only develop or adapt advanced instruments for accurate measurements at these small scales but also develop new three-dimensional numerical tools capable of capturing the extremely complex physical phenomena at, for example the triple-line (vapour-liquid-solid). These techniques will not only help elucidate the current phenomena but can find wide application in similar research, both in thermal and biomedical flows.The proposal brings together two teams of academics working both in microfabrication/sensors and two-phase flow supported by industry (Thermacore, Selex Galileo, Sustainable Engine Systems and Rainford Precision) to tackle some of the key fundamental challenges that will enable a wider adoption of this cooling method hence meeting current and future needs in the industry. The proposed research will also have a wider impact on energy conservation and environmental footprint trough, for example, more efficient thermal management of data/supercomputing centres around the world that can lead to a reduction in energy consumption and reuse of heat that would otherwise be rejected.
目前的发展和未来的趋势,在各种行业,如电子设备和微处理和制冷系统中使用的小规模设备,提出了越来越多的要求,从小面积去除较高的热负荷。在某些情况下,进一步的发展是不可能的,除非提供足够的冷却的问题得到解决。因此,从空气到液体的进展,特别是流动沸腾,以传递所产生的高热通量,是唯一可能的前进方向。蒸发冷却不仅可以传递这些负载,而且还可以提供更大的温度均匀性,因为工作流体可以(在精心设计的系统中)处于恒定的饱和温度。微通道流动沸腾过程的考虑已成为可能的微加工技术的发展,在金属和物质,如硅。然而,仍然存在基本的流体流动和传热相关的问题,需要解决这些微型换热器在工业中更广泛使用之前可能。将研究的具体挑战-在本质上是基本的和实际的-包括流动不稳定性和分布不均,这是系统歧管和外部电路之间的相互作用的结果。这些可能导致热交换器中的流动逆转和干燥,随后热传递速率急剧降低。对基本物理现象及其与工业设计的相关性的理解是重点之一,也是拟议研究的主要挑战之一。其他参数的影响,如入口过冷,这再次涉及到微型换热器本身,而且也与整体设计,将解决沿着与材料/表面特性,通过使用金属和硅微通道。拟议的工作将包括仔细接触的详细实验,测量相关参数,如局部热通量,温度和压力,并通过工业上可用的和专门开发和制造的传感器与流动可视化相结合。研究团队不仅将开发或改造先进的仪器,以便在这些小尺度上进行精确测量,而且还将开发新的三维数值工具,能够捕捉到极其复杂的物理现象,例如三线(蒸汽-液体-固体)。这些技术不仅有助于阐明当前的现象,而且可以在类似的研究中找到广泛的应用,无论是在热和生物医学流动中。该提案汇集了两个在工业界支持下从事微加工/传感器和两相流研究的学者团队(Thermacore,Selex Galileo,可持续发动机系统和雷恩福德精密)解决一些关键的基本挑战,使这种冷却方法得到更广泛的采用,从而满足行业当前和未来的需求。拟议的研究还将对节能和环境足迹产生更广泛的影响,例如,对世界各地的数据/超级计算中心进行更有效的热管理,从而减少能源消耗和重新利用热量,否则这些热量将被丢弃。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow Boiling in Small to Micro Diameter Tubes and Microchannels
小直径管和微通道中的流动沸腾
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Karayiannis T.G.
- 通讯作者:Karayiannis T.G.
Condensation Heat Transfer in Microchannels
微通道中的冷凝传热
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Al-Zaidi A.H.
- 通讯作者:Al-Zaidi A.H.
Flow Boiling Heat Transfer of R134a in Multi Microchannels
- DOI:10.1016/j.ijheatmasstransfer.2017.03.057
- 发表时间:2017-07
- 期刊:
- 影响因子:5.2
- 作者:Ekhlas M. Fayyadh;M. Mahmoud;K. Sefiane;T. Karayiannis
- 通讯作者:Ekhlas M. Fayyadh;M. Mahmoud;K. Sefiane;T. Karayiannis
Flow boiling in microchannels: Fundamentals and applications
- DOI:10.1016/j.applthermaleng.2016.08.063
- 发表时间:2017-03-25
- 期刊:
- 影响因子:6.4
- 作者:Karayiannis, T. G.;Mahmoud, M. M.
- 通讯作者:Mahmoud, M. M.
Flow Boiling of HFE-7100 in Multi-Microchannels: Aspect Ratio Effect
HFE-7100 在多微通道中的流动沸腾:纵横比效应
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Al-Zaidi A.H.
- 通讯作者:Al-Zaidi A.H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tassos Karayiannis其他文献
Tassos Karayiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tassos Karayiannis', 18)}}的其他基金
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
- 批准号:
EP/X015335/1 - 财政年份:2024
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T033045/1 - 财政年份:2021
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
- 批准号:
EP/S019502/1 - 财政年份:2019
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
Flow Boiling and Condensation of Mixtures in Microscale
微尺度混合物的流动沸腾和冷凝
- 批准号:
EP/N011112/1 - 财政年份:2016
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
Boiling and Condensation in Microchannels
微通道中的沸腾和冷凝
- 批准号:
EP/D500095/1 - 财政年份:2006
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
相似海外基金
CAREER: Design Principles of Deformable and Adhesive Particles in Multiphase Flow through Microchannels
职业:微通道多相流中可变形和粘附颗粒的设计原理
- 批准号:
2339972 - 财政年份:2024
- 资助金额:
$ 53.41万 - 项目类别:
Continuing Grant
Development of a method for measuring the volume of nanolitre droplets in microchannels using phase retrieval holography
开发一种使用相检索全息术测量微通道中纳升液滴体积的方法
- 批准号:
23K03658 - 财政年份:2023
- 资助金额:
$ 53.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Portable SOFC with high thermal insulation and microchannels
具有高隔热性和微通道的便携式SOFC
- 批准号:
23H02056 - 财政年份:2023
- 资助金额:
$ 53.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-efficiency materials transfer and pharmaceutical application into mesoporous structures using laminar flow controlled in microchannels
使用微通道中控制的层流将高效材料转移和药物应用到介孔结构中
- 批准号:
22K04812 - 财政年份:2022
- 资助金额:
$ 53.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics of Spontaneous Emulsification in Microchannels
微通道中自发乳化的动力学
- 批准号:
2223988 - 财政年份:2022
- 资助金额:
$ 53.41万 - 项目类别:
Standard Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T033045/1 - 财政年份:2021
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
An Experimental Investigation on the Retention of Shear-Thinning Fluids Through Microchannels
微通道保留剪切稀化流体的实验研究
- 批准号:
563861-2021 - 财政年份:2021
- 资助金额:
$ 53.41万 - 项目类别:
University Undergraduate Student Research Awards
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T033398/1 - 财政年份:2020
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant
Development of a Surfactant Separator by Using Taylor Flows in Microchannels
利用微通道中的泰勒流开发表面活性剂分离器
- 批准号:
20K04267 - 财政年份:2020
- 资助金额:
$ 53.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BOiliNg flows in SmAll and mIcrochannels (BONSAI): From Fundamentals to Design
小和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T03338X/1 - 财政年份:2020
- 资助金额:
$ 53.41万 - 项目类别:
Research Grant














{{item.name}}会员




