BOiliNg flows in SmAll and mIcrochannels (BONSAI): From Fundamentals to Design
小和微通道中的沸腾流 (BONSAI):从基础知识到设计
基本信息
- 批准号:EP/T03338X/1
- 负责人:
- 金额:$ 107.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
BONSAI is an ambitious 3-year research project aimed at investigating the fundamental heat and mass transfer features of boiling flows in miniaturised channels. It combines cutting-edge experiments based on space/time-resolved diagnostics, with high-fidelity interface-resolving numerical simulations, to ultimately provide validated thermal-design tools for high-performance compact evaporators. The proposed project assembles multidisciplinary expertise of investigators at Imperial College London, Brunel University London, and the University of Nottingham, with support from 3 world-leading research institutes: Alan Turing Institute, CERN (Switzerland) and VIR2AL; and 11 industry partners: Aavid Boyd Thermacore, Alfa Laval, CALGAVIN, HEXAG&PIN, HiETA, Hubbard/Daikin, IBM, Oxford nanoSystems, Ricardo, TMD and TTP.The recent trend towards device miniaturisation driven by the microelectronics industry has placed an increasing demand on removing higher thermal loads, of order of MW/m2, from areas of order cm2. In some applications (e.g. refrigeration) new 'green' refrigerants are needed, but in small volumes due to flammability or cost, while in others (e.g. batteries for EV and other applications) non-uniform or unsteady heat dissipation is highly detrimental to performance and lifetime. Flow boiling in multi-microchannel evaporators promises to meet such challenging requirements with low fluid volumes, also allowing better temperature uniformity and smaller pumping power, in systems that go well beyond the current state-of-the-art. Due to significant industrial (heat exchange) and environmental (efficient energy use) interest, the understanding of boiling heat transfer has improved in recent years, with focus on flow pattern transitions and characteristics, pressure drop, and heat transfer performance. However, our current understanding is simply insufficient to facilitate the wider use of these micro-heat-exchangers in industry, which remains unexploited.BONSAI has been tailored specifically to address the fundamental phenomena underlying boiling in miniaturised devices and their relevance to industrial design. The challenges to be addressed include the impact of channel shape and surface characteristics on flow instabilities, heat transfer and pressure drop, and the relationship between the time-dependent evolution of the liquid-vapour interface, thin liquid-film dynamics, flow field, appearance of dry vapour patches, hot spots, and local heat transfer characteristics. The extensive experimental/numerical database generated will be exploited via theoretical and novel machine-learning methods to develop physics-based design tools for predicting the effects of industrially-relevant thermohydraulic parameters on system performance. The collaboration with our partners will ensure alignment with industrial needs and accelerate technology transfer to industry. In addition, HiETA will provide Metal Additive Manufacturing heat sinks that will be assessed against embossing technologies as ways of mass-producing microchannel heat exchangers, Oxford nanoSystems will provide nano-structured surface coatings, and IBM will support visits to their Research Labs focussed on efficient parallelisation of the numerical solver and scale-out studies.The proposed research will not only enable a wider adoption of two-phase thermal solutions and hence the meeting of current and future needs across industrial sectors, but also will lead to more efficient thermal management of data-centres with associated reduction in energy consumption and carbon footprint, and the recovery and reuse of waste heat that is currently being rejected. This will constitute an important step towards meeting the UK's emission targets by 2050. Additionally, BONSAI will integrate with EPSRC Prosperity Outcomes of Delivery Plan 2016-20 and enable technological advances in relation to the Manufacturing the Future theme, contributing to a Productive and Resilient Nation.
BONSAI 是一个雄心勃勃的为期 3 年的研究项目,旨在研究微型通道中沸腾流的基本传热和传质特征。它将基于空间/时间解析诊断的尖端实验与高保真接口解析数值模拟相结合,最终为高性能紧凑型蒸发器提供经过验证的热设计工具。拟议的项目汇集了伦敦帝国理工学院、伦敦布鲁内尔大学和诺丁汉大学研究人员的多学科专业知识,并得到了 3 个世界领先研究机构的支持:艾伦图灵研究所、CERN(瑞士)和 VIR2AL;以及 11 个行业合作伙伴:Aavid Boyd Thermacore、Alfa Laval、CALGAVIN、HEXAG&PIN、HiETA、Hubbard/Daikin、IBM、Oxford nanoSystems、Ricardo、TMD 和 TTP。近期微电子行业推动的设备小型化趋势对消除区域中 MW/m2 量级的较高热负荷提出了日益增长的需求 cm2 量级。在某些应用(例如制冷)中,需要新的“绿色”制冷剂,但由于易燃性或成本而需要少量使用,而在其他应用(例如电动汽车和其他应用的电池)中,不均匀或不稳定的散热对性能和使用寿命非常不利。多微通道蒸发器中的流动沸腾有望以低流体体积满足此类具有挑战性的要求,同时在远远超出当前最先进技术的系统中实现更好的温度均匀性和更小的泵送功率。由于工业(热交换)和环境(高效能源利用)的巨大关注,近年来对沸腾传热的理解有所提高,重点关注流型转变和特性、压降和传热性能。然而,我们目前的理解还不足以促进这些微型热交换器在工业中的更广泛使用,这些微型热交换器尚未得到开发。BONSAI 是专门为解决微型设备中沸腾的基本现象及其与工业设计的相关性而定制的。需要解决的挑战包括通道形状和表面特性对流动不稳定性、传热和压降的影响,以及液-汽界面随时间演化、薄液膜动力学、流场、干蒸汽斑块出现、热点和局部传热特性之间的关系。生成的广泛实验/数值数据库将通过理论和新颖的机器学习方法来开发基于物理的设计工具,用于预测工业相关热工水力参数对系统性能的影响。与我们的合作伙伴的合作将确保符合行业需求并加速向行业的技术转移。此外,HiETA 将提供金属增材制造散热器,将根据压花技术作为批量生产微通道热交换器的方式进行评估,Oxford nanoSystems 将提供纳米结构表面涂层,IBM 将支持参观其研究实验室,重点关注数值求解器的高效并行化和横向扩展研究。拟议的研究不仅将促进更广泛的采用 两相热解决方案不仅可以满足工业部门当前和未来的需求,而且还可以提高数据中心的热管理效率,从而减少能源消耗和碳足迹,并回收和再利用目前被拒绝的废热。这将是实现英国 2050 年排放目标的重要一步。此外,BONSAI 将与 EPSRC 2016-20 年交付计划繁荣成果相结合,推动与“制造未来”主题相关的技术进步,为建设富有生产力和韧性的国家做出贡献。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow boiling in copper and aluminium microchannels
铜和铝微通道中的流动沸腾
- DOI:10.1016/j.ijheatmasstransfer.2022.123101
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Al-Zaidi A
- 通讯作者:Al-Zaidi A
Influence of inlet vapour quality perturbations on the transient response of flow-boiling heat transfer
- DOI:10.1016/j.ijheatmasstransfer.2021.121017
- 发表时间:2021-05
- 期刊:
- 影响因子:5.2
- 作者:J. Dirker;W. van den Bergh;H. Moran;C. Markides;J. Meyer
- 通讯作者:J. Dirker;W. van den Bergh;H. Moran;C. Markides;J. Meyer
Vapour Bubble Formation in Subcooled Flow Boiling Through a Vertical Channel
垂直通道过冷流沸腾中蒸气泡的形成
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chen Z.
- 通讯作者:Chen Z.
PREFACE TO SPECIAL ISSUE: HEAT TRANSFER,WAVES, AND VORTEX PHENOMENA IN TWO-PHASE FLOWS
专题前言:两相流中的传热、波和涡流现象
- DOI:10.1615/interfacphenomheattransfer.2022042825
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Ajaev V
- 通讯作者:Ajaev V
Flow boiling in a vertically oriented miniaturised square channel: From visual observations to laser-based measurements
垂直定向微型方形通道中的流动沸腾:从目视观察到基于激光的测量
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chen Z.
- 通讯作者:Chen Z.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Markides其他文献
有机郎肯循环中喷射器能量分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
张琨;杨勇;Christos Markides;沈胜强 - 通讯作者:
沈胜强
Low-loss THz Waveguides and Devices
低损耗太赫兹波导和器件
- DOI:
10.1364/photonics.2014.m3c.1 - 发表时间:
2014 - 期刊:
- 影响因子:2.4
- 作者:
B. Rahman;M. Uthman;A. Quadir;K. Grattan;Christos Markides;C. Themistos - 通讯作者:
C. Themistos
Christos Markides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Markides', 18)}}的其他基金
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
- 批准号:
EP/Y004973/1 - 财政年份:2023
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
PCM-in-PV - PV cells with modified optical and thermal properties for high-efficiency electrical applications
PCM-in-PV - 具有改进的光学和热性能的光伏电池,适用于高效电气应用
- 批准号:
EP/Y02821X/1 - 财政年份:2023
- 资助金额:
$ 107.8万 - 项目类别:
Fellowship
Indiacool - UK-India Solar Cooling Innovation (Energy Catalyst Mid-stage Programme)
Indiacool - 英国-印度太阳能冷却创新(能源催化剂中期计划)
- 批准号:
EP/P030920/1 - 财政年份:2017
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
Energy-Use Minimisation via High Performance Heat-Power-Cooling Conversion and Integration: A Holistic Molecules to Technologies to Systems Approach
通过高性能热-电-冷却转换和集成实现能源使用最小化:从分子到技术再到系统的整体方法
- 批准号:
EP/P004709/1 - 财政年份:2016
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
相似海外基金
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T033045/1 - 财政年份:2021
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
SHF: Small: Beyond Accelerators - Using FPGAs to Achieve Fine-grained Control of Data-flows in Embedded SoCs
SHF:小型:超越加速器 - 使用 FPGA 实现嵌入式 SoC 中数据流的细粒度控制
- 批准号:
2008799 - 财政年份:2020
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T033398/1 - 财政年份:2020
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
- 批准号:
2008305 - 财政年份:2020
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
- 批准号:
1907591 - 财政年份:2019
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
- 批准号:
1907612 - 财政年份:2019
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant
III: Small: DataWorld: Externalizing Hidden Data Flows for Situated Analytics
III:小:DataWorld:将隐藏数据流外部化以进行情境分析
- 批准号:
1908605 - 财政年份:2019
- 资助金额:
$ 107.8万 - 项目类别:
Continuing Grant
AF: Small: Embedding Distributed Computations and Flows in Networks
AF:小型:在网络中嵌入分布式计算和流程
- 批准号:
1909363 - 财政年份:2019
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant
A Small Research Facility for Multi-phase Flows at High Pressure and Temperature
高压高温多相流小型研究设施
- 批准号:
EP/P020593/1 - 财政年份:2017
- 资助金额:
$ 107.8万 - 项目类别:
Research Grant
CIF: Small: Fundamental Limits of Wireless Communications with Stochastic Information Flows and Queueing Constraints
CIF:小:具有随机信息流和排队约束的无线通信的基本限制
- 批准号:
1618615 - 财政年份:2016
- 资助金额:
$ 107.8万 - 项目类别:
Standard Grant














{{item.name}}会员




