The Limits of Decidability: Counting, Transitivity, Equivalence
可判定性的限制:计数、传递性、等价性
基本信息
- 批准号:EP/K017438/1
- 负责人:
- 金额:$ 9.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
First-order logic is a formal language for describing structured ensembles of objects and data. The use of first-order logic to specify, query and manipulate such structured data is now firmly embedded in the theory and practice of a wide range of academic disciplines. Automating the process of deductive reasoning in first-order logic is therefore a central challenge in Computer Science.However, reasoning with first-order logic is known to be undecidable: it is in principle impossible to write a computer program that can reliably determine all logical consequences expressible using this formalism. On the other hand, it has long been understood that, by restricting the language of first-order logic in various ways, we obtain 'fragments' of logic in which decidability is restored. Furthermore, we observe a trade-off between expressive power and computational manageability: the smaller a fragment is---i.e. the less expressive it is---the easier it is to reason in. The research proposed here will investigate several very expressive fragments of first-order logic---those near the upper limit of decidability---and determine their decidability/computational complexity.We take as our point of departure three fragments of first-order logic which are known to be decidable: the 'two-variable fragment', the 'guarded fragment' and the 'fluted fragment'. We investigate the effect of extending the expressive power of these logics in three ways (severally, or in combination). The first extension we consider involves numerical quantifiers, which allow us to place (upper or lower) bounds on how many objects satisfy some given property. The second extension we consider involves the use of transitive relations such as 'is taller than' or `earns more money then'. (Such relations have special logical properties that need to be taken into account in reasoning problems.) The third extension we consider involves the use of equivalence relations such as 'is the same height as' or 'has the same tax code as'. In this way, we obtain a collection of fragments of first-order logic for which it is currently open whether reasoning is decidable. We propose to resolve these open problems.For those fragments which we show to be decidable, we shall obtain (as a by-product of our proof) an algorithm for reasoning within the fragments in question; for those shown to be undecidable, we know that no such algorithm exists. Moreover, for the decidable fragments, we can quantify the difficulty of reasoning within them, and even identify the specific kinds of formulas that are responsible for the difficult cases. Thus, our research represents a contribution to the enterprise of using first-order logic to describe, query or manipulate structured data.
一阶逻辑是一种用于描述对象和数据的结构化集合的形式语言。使用一阶逻辑来指定,查询和操作这种结构化数据现在已经牢固地嵌入到广泛的学科理论和实践中。因此,自动化一阶逻辑的演绎推理过程是计算机科学的一个核心挑战。然而,一阶逻辑的推理是不可判定的:原则上不可能编写一个计算机程序来可靠地确定所有使用这种形式化的逻辑结果。另一方面,人们早就知道,通过以各种方式限制一阶逻辑的语言,我们得到了恢复可判定性的逻辑的“片段”。此外,我们观察到表达能力和计算能力之间的权衡:片段越小--也就是说,它的表达能力越低--越容易推理。这里提出的研究将调查几个非常有表现力的片段的一阶逻辑-那些接近上限的可判定性-并确定其可判定性/计算复杂度。我们采取作为我们的出发点的三个片段的一阶逻辑这是已知的可判定的:“两变量片段”,“保护片段”和“凹槽片段”。我们调查的影响,这些逻辑的表达能力,在三种方式(分别,或组合)。我们考虑的第一个扩展涉及数字量词,它允许我们对有多少对象满足某个给定属性设置(上或下)界限。我们考虑的第二个扩展涉及到传递关系的使用,例如“比”或“赚更多的钱”。(Such关系具有特殊的逻辑属性,需要在推理问题中加以考虑。我们考虑的第三个扩展涉及使用等价关系,例如“与……身高相同”或“与……税法相同”。通过这种方式,我们得到了一个一阶逻辑片段的集合,对于这些片段,推理是否是可判定的目前还没有定论。我们提出解决这些开放的问题。对于那些我们证明是可判定的片段,我们将获得(作为我们证明的副产品)在所讨论的片段内进行推理的算法;对于那些证明是不可判定的片段,我们知道不存在这样的算法。此外,对于可判定的片段,我们可以量化其中推理的难度,甚至可以识别出导致困难情况的特定类型的公式。因此,我们的研究代表了企业使用一阶逻辑来描述,查询或操作结构化数据的贡献。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Logics with counting and equivalence
具有计数和等价的逻辑
- DOI:10.1145/2603088.2603117
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Pratt-Hartmann I
- 通讯作者:Pratt-Hartmann I
ADDING PATH-FUNCTIONAL DEPENDENCIES TO THE GUARDED TWO-VARIABLE FRAGMENT WITH COUNTING
通过计数向受保护的二变量片段添加路径功能依赖性
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0.6
- 作者:Kourtis G
- 通讯作者:Kourtis G
The two-variable fragment with counting and equivalence
具有计数和等价性的二变量片段
- DOI:10.1002/malq.201400102
- 发表时间:2015
- 期刊:
- 影响因子:0.3
- 作者:Pratt-Hartmann I
- 通讯作者:Pratt-Hartmann I
THE FLUTED FRAGMENT REVISITED
重新审视凹槽碎片
- DOI:10.1017/jsl.2019.33
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:PRATT-HARTMANN I
- 通讯作者:PRATT-HARTMANN I
Finite satisfiability for two-variable, first-order logic with one transitive relation is decidable
具有一个传递关系的二变量一阶逻辑的有限可满足性是可判定的
- DOI:10.1002/malq.201700055
- 发表时间:2018
- 期刊:
- 影响因子:0.3
- 作者:Pratt-Hartmann I
- 通讯作者:Pratt-Hartmann I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
I Pratt-Hartmann其他文献
I Pratt-Hartmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('I Pratt-Hartmann', 18)}}的其他基金
Arithmetic Circuits in Mathematical Logic
数理逻辑中的算术电路
- 批准号:
EP/F069154/1 - 财政年份:2008
- 资助金额:
$ 9.17万 - 项目类别:
Research Grant
Computational Logic of Euclidean Spaces
欧几里得空间的计算逻辑
- 批准号:
EP/E035248/1 - 财政年份:2007
- 资助金额:
$ 9.17万 - 项目类别:
Research Grant
相似海外基金
Heights, Dynamics, and Decidability
高度、动态和可判定性
- 批准号:
RGPIN-2022-02951 - 财政年份:2022
- 资助金额:
$ 9.17万 - 项目类别:
Discovery Grants Program - Individual
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
- 批准号:
2201045 - 财政年份:2022
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Geometry and decidability in infinite groups
无限群中的几何和可判定性
- 批准号:
2770835 - 财政年份:2022
- 资助金额:
$ 9.17万 - 项目类别:
Studentship
Analysis on the decidability of the almost-universality problem for higher-order languages
高阶语言几乎普遍性问题的可判定性分析
- 批准号:
19K14582 - 财政年份:2019
- 资助金额:
$ 9.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Formalization of the decidability of the reachability problem for vector addition systems
向量加法系统可达性问题可判定性的形式化
- 批准号:
18K11154 - 财政年份:2018
- 资助金额:
$ 9.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Definability and decidability in global and local fields
全局和局部领域的可定义性和可判定性
- 批准号:
404427454 - 财政年份:2018
- 资助金额:
$ 9.17万 - 项目类别:
Research Grants
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
- 批准号:
105829-2013 - 财政年份:2017
- 资助金额:
$ 9.17万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in computational complexity and decidability
计算复杂性和可判定性的代数方法
- 批准号:
249684-2012 - 财政年份:2017
- 资助金额:
$ 9.17万 - 项目类别:
Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
- 批准号:
105829-2013 - 财政年份:2016
- 资助金额:
$ 9.17万 - 项目类别:
Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
- 批准号:
105829-2013 - 财政年份:2015
- 资助金额:
$ 9.17万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




