Heights, Dynamics, and Decidability

高度、动态和可判定性

基本信息

  • 批准号:
    RGPIN-2022-02951
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Dynamical systems are important mathematical objects of study, which are now ubiquitous within many of the physical sciences and social sciences due to their utility in modelling complex systems that vary over time.  One of the most difficult problems when dealing with dynamical systems is how to measure their complexity.  In practice, there is too much information to work with and one needs to work with simpler, easier to compute, invariants which give insight into how complex the ambient system is.  In the realm of Algebraic dynamical systems, that is, systems which are constructed from algebraic objects (varieties) and maps (morphisms) and where a map is repeatedly applied to points in the variety, it was observed by Kawaguchi and Silverman that a number theoretic notion, called the height, gives insight into the complexity of such systems. They have conjecturally made this precise by linking their arithmetic notion of complexity to a more classical invariant used within complex dynamics, called the dynamical degree.  This has gone on to become a major area of research within arithmetic dynamics within the last five years and much of this proposal builds upon their framework. This proposal deals with significantly broadening the scope of Kawaguchi and Silverman's work.  In joint work with Dragos Ghioca and Matthew Satriano, I initiated the study of dynamical sequences, which are sequences that are naturally obtained from algebraic dynamical systems.  In a sense, this construction is giving a "snapshot" of the dynamical system and these sequences encode information about the complexity of the ambient dynamical system.  In theory, having complete knowledge of all such sequences associated to a given dynamical system would be sufficient to reconstruct it entirely. This broad framework considers many classical results from number theory, algebraic combinatorics, and from the theory of differential equations. The long-term goal of my research program is to answer key questions that arise within this framework, which are motivated by fundamental problems across many different mathematical disciplines. These include questions about complexity, questions about decidability, and questions in Diophantine approximation and logic. I will answer these questions by applying recent techniques, some of which I have helped develop over the past six years, and others that have been developed by other researchers working on related problems. Answers to these questions will have important ramifications in many other mathematical disciplines, as they will in part provide an algorithmic framework for dealing with many naturally arising mathematical problems.  In addition, the proposal involves the training of undergraduate, graduate, and postdoctoral researchers, and will give trainees important mathematical expertise and both the programming and writing skills that are necessary for working in both STEM-related industries and in academia.
动态系统是重要的数学研究对象,由于其在建模随时间变化的复杂系统中的实用性,它现在在许多物理科学和社会科学中无处不在。处理动态系统时最困难的问题之一是如何测量其复杂性。在实践中,有太多的信息需要处理,人们需要更简单,更容易计算,在代数学动力系统领域,即由代数对象(簇)和映射(态射)构造的系统,其中映射被反复应用于簇中的点,川口和西尔弗曼观察到一个数论概念,称为高度,可以洞察这种系统的复杂性。他们通过将复杂性的算术概念与复杂动力学中使用的一个更经典的不变量联系起来,称为动力学度,从而使这一点变得精确。这在过去五年中已经成为算术动力学的一个主要研究领域,其中大部分建议都建立在他们的框架之上。这一建议涉及到显着扩大范围的川口和西尔弗曼的工作。在联合工作与Dragos吉奥卡和马修萨特里亚诺,我发起了研究动态序列,这是序列,自然获得的代数动力系统。 从某种意义上说,这种构造给出了动力系统的“快照”,这些序列编码了关于周围动力系统复杂性的信息。理论上,拥有与给定动力系统相关的所有此类序列的完整知识就足以完全重建它。这个广泛的框架认为许多经典的结果从数论,代数组合,并从微分方程理论。我的研究计划的长期目标是回答在这个框架内出现的关键问题,这些问题是由许多不同数学学科的基本问题所激发的。这些问题包括关于复杂性的问题,关于可判定性的问题,以及丢番图近似和逻辑的问题。我将通过应用最新的技术来回答这些问题,其中一些是我在过去六年中帮助开发的,另一些是由其他研究相关问题的研究人员开发的。 这些问题的答案将在许多其他数学学科中产生重要的影响,因为它们将部分地为处理许多自然产生的数学问题提供算法框架。此外,该提案涉及本科生,研究生和博士后研究人员的培训,并将给予学员重要的数学专业知识和编程和写作技能,这是必要的工作在两个干-相关行业和学术界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bell, Jason其他文献

ASSESSING WHETHER THERE IS A CANCER PREMIUM FOR THE VALUE OF A STATISTICAL LIFE
  • DOI:
    10.1002/hec.2919
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Viscusi, W. Kip;Huber, Joel;Bell, Jason
  • 通讯作者:
    Bell, Jason
The effectiveness of touchscreen-based attentional bias modification to thin body stimuli on state rumination
  • DOI:
    10.1080/02699931.2020.1718616
  • 发表时间:
    2020-01-23
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Dondzilo, Laura;Rieger, Elizabeth;Bell, Jason
  • 通讯作者:
    Bell, Jason
Detection of shape in radial frequency contours: Independence of local and global form information
  • DOI:
    10.1016/j.visres.2007.01.006
  • 发表时间:
    2007-05-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bell, Jason;Badcock, David R.;Wilkinson, Frances
  • 通讯作者:
    Wilkinson, Frances
Radial frequency adaptation suggests polar-based coding of local shape cues
  • DOI:
    10.1016/j.visres.2008.07.003
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bell, Jason;Dickinson, J. Edwin;Badcock, David R.
  • 通讯作者:
    Badcock, David R.
Discrimination of rotated-in-depth curves is facilitated by stereoscopic cues, but curvature is not tuned for stereoscopic rotation-in-depth
  • DOI:
    10.1016/j.visres.2012.11.003
  • 发表时间:
    2013-01-25
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bell, Jason;Kanji, Jameel;Kingdom, Frederick A. A.
  • 通讯作者:
    Kingdom, Frederick A. A.

Bell, Jason的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bell, Jason', 18)}}的其他基金

Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
  • 批准号:
    RGPIN-2016-03632
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Self-Regulated Learning in Gaming Analytics
游戏分析中的自我调节学习
  • 批准号:
    494862-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Mapping Your Future
规划你的未来
  • 批准号:
    483766-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    University Undergraduate Student Research Awards
The Dixmier-Moeglin equivalence and dynamical properties of automorphisms
Dixmier-Moeglin 等价和自同构的动力学性质
  • 批准号:
    326532-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
The Dixmier-Moeglin equivalence and dynamical properties of automorphisms
Dixmier-Moeglin 等价和自同构的动力学性质
  • 批准号:
    326532-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了