Homotopical inductive types
同伦归纳类型
基本信息
- 批准号:EP/K023128/1
- 负责人:
- 金额:$ 36.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past few years, new surprising connections have emerged between two traditionally distant areas of mathematics: mathematical logic (which is generally concerned with the study of the forms of reasoning used in mathematics) and homotopy theory (which is interested in understanding and classifying various notions of space). These connections are useful because they provide a cleargeometric intuition that helps us to work with a class of logical systems, known as type theories. On that basis, the Fields medallist Vladimir Voevodsky has formulated an ambitious research programme, called the Univalent Foundations of Mathematics programme, that seeks to develop a new foundations of mathematics on the basis of type theories that include new axioms motivated by homotopy theory.The proposed research seeks to advance our understanding of the type theories proposed by Voevodsky in order to develop the Univalent Foundations programme. Our first goal is to understand better the relationship between the type theories introduced by Voevodsky and axiomatic set theories, which represent the more traditional approach to foundations of mathematics. In particular, we want to clarify the logical status of the Univalence Axiom, a new axiom which allows us to treat objects that share all structural properties as equal. Furthermore, we wish to gain further insight into a variation, again motivated by homotopy theory, over the standard way of defining types.
在过去的几年里,在两个传统上相距遥远的数学领域之间出现了令人惊讶的新联系:数理逻辑(通常涉及数学中使用的推理形式的研究)和同伦理论(感兴趣的是对各种空间概念的理解和分类)。这些联系是有用的,因为它们提供了一种清晰的几何直觉,帮助我们处理一类被称为类型理论的逻辑系统。在此基础上,菲尔兹奖获得者沃沃夫斯基制定了一个雄心勃勃的研究计划,称为单价数学基础计划,该计划寻求在类型理论的基础上发展新的数学基础,其中包括由同伦理论引发的新公理。拟议的研究旨在增进我们对沃沃夫斯基提出的类型理论的理解,以发展单价基础计划。我们的第一个目标是更好地理解沃沃茨基引入的类型理论和公理集合论之间的关系,公理集合论代表了更传统的数学基础方法。特别是,我们想要澄清一价公理的逻辑地位,这是一种新的公理,它允许我们平等地对待拥有所有结构属性的对象。此外,我们还希望对定义类型的标准方式上的一种变体有进一步的了解,这种变体同样是由同伦理论驱动的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preservation of choice principles under realizability
可实现性下保留选择原则
- DOI:10.1093/jigpal/jzz002
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Dihoum E
- 通讯作者:Dihoum E
Concepts of Proof in Mathematics, Philosophy, and Computer Science
数学、哲学和计算机科学中的证明概念
- DOI:10.1515/9781501502620-019
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Rathjen M
- 通讯作者:Rathjen M
Power Kripke-Platek set theory and the axiom of choice
Power Kripke-Platek 集合论和选择公理
- DOI:10.1093/logcom/exaa020
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Rathjen M
- 通讯作者:Rathjen M
Classifying the Provably Total set Functions of KP and KP(P)
对 KP 和 KP(P) 的可证明总集函数进行分类
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Cook J
- 通讯作者:Cook J
On operads, bimodules and analytic functors
关于操作数、双模和解析函子
- DOI:10.48550/arxiv.1405.7270
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Gambino Nicola
- 通讯作者:Gambino Nicola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Rathjen其他文献
Intuitionistic sets and numbers: small set theory and Heyting arithmetic
直觉集合和数:小集合论和海廷算术
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.3
- 作者:
Stewart Shapiro;Charles McCarty;Michael Rathjen - 通讯作者:
Michael Rathjen
Admissible extensions of subtheories of second order arithmetic
二阶算术子理论的可容许扩张
- DOI:
10.1016/j.apal.2024.103425 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Gerhard Jäger;Michael Rathjen - 通讯作者:
Michael Rathjen
Mathematical Logic: Proof Theory, Constructive Mathematics
数理逻辑:证明论、构造性数学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Samuel R. Buss;Rosalie Iemhoff;U. Kohlenbach;Michael Rathjen - 通讯作者:
Michael Rathjen
Well ordering principles for iterated $$\Pi ^1_1$$ -comprehension
- DOI:
10.1007/s00029-023-00879-2 - 发表时间:
2023-10-12 - 期刊:
- 影响因子:1.200
- 作者:
Anton Freund;Michael Rathjen - 通讯作者:
Michael Rathjen
Michael Rathjen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Rathjen', 18)}}的其他基金
WORKSHOP: LEEDS SYMPOSIUM ON PROOF THEORY & CONSTRUCTIVISM
研讨会:利兹证明论研讨会
- 批准号:
EP/G058024/1 - 财政年份:2009
- 资助金额:
$ 36.16万 - 项目类别:
Research Grant
Constructive set theory: Models, independence results and mathematics
构造性集合论:模型、独立结果和数学
- 批准号:
EP/G029520/1 - 财政年份:2009
- 资助金额:
$ 36.16万 - 项目类别:
Research Grant
Constructive Set Theory: Forcing, Large Sets, and Mathematics
构造性集合论:强迫、大集合和数学
- 批准号:
0301162 - 财政年份:2003
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Proof-Theoretical Investigations of Theories
数学科学:理论的证明理论研究
- 批准号:
9203443 - 财政年份:1992
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
- 批准号:
2338909 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Continuing Grant
Safe Power Delivery Using a Reconfigurable Mesh of Inductive Transceivers
使用可重新配置的感应式收发器网实现安全电力传输
- 批准号:
EP/X020606/1 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Research Grant
Creation of a new semiconductor device manufacturing process using inductive charging technology aimed at reducing CO2 emissions
使用感应充电技术创建新的半导体器件制造工艺,旨在减少二氧化碳排放
- 批准号:
23K03627 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simultaneous multi-variable measurements of velocity and scalar fields for inductive environmental assessment
用于感应环境评估的速度场和标量场的同步多变量测量
- 批准号:
23H01569 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Improving Inductive Reasoning Skills in Polymer Science Through Open Virtual Experiment Simulator Education Tools
通过开放式虚拟实验模拟器教育工具提高高分子科学中的归纳推理技能
- 批准号:
2142043 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Realization of novel devices with inductive ac spin current
具有感应交流自旋电流的新型器件的实现
- 批准号:
22K14301 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
On the range of invariant problem for inductive limit type actions of Z_2 on AF algebras
AF代数上Z_2归纳极限型作用不变问题的范围
- 批准号:
573357-2022 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
University Undergraduate Student Research Awards
Investigating the impact of youth's inductive exploration of local technologies featured in Indigenous stories on their engagement, self-efficacy, and persistence in STEM
调查青年对土著故事中的当地技术的归纳探索对其参与、自我效能和坚持 STEM 的影响
- 批准号:
2215554 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Continuing Grant