LOW-DIMENSIONAL CHAOS IN NEOCORTEX

新皮质中的低维混沌

基本信息

项目摘要

The use of nonlinear mathematical dynamics is claimed to be revolutioning some sciences, because deterministic models can be made of unresolved physical and chemical phenomena (e.g., Brownian motion, turbulent flow, etc.). Several laboratories have attempted to apply nonlinear dynamics, th t is, the correlation dimension (D2) to the electroencephalogram of humans. Our laboratory, being skeptical, tested some of their claims on surface potentials in a simple model system, the olfactory bulb). The bulb has the same cell types and intrinsic neurochemistry as neocortex, but has a much simpler and better understood neurophysiology. Algorithms were developed t estimate D2, which led to the conviction that low-dimentional chaos DOES EXIST in the bulb. Using brief epochs and behavioral control, stationarity was observed; by eliminating spurious autocorrelations, linear correlation- integrals were achieved to calculate D2; by studying known chaotic attractors, rules were developed for sampling the attractor. Following thi experience, we now propose to determine whether or not the nonlinear dynamical analyses can be applied to real neocortex. Our first Specific Ai is to evalute D2 during various normal cortical conditions: quiet wakefulness, sleep and event-related reactions. Because of the sensitivity of the D2-meausre and its potential clinical application, Specific Aim 2 is to evalute D2 during known pathological conditions in the cortex: hypernoradrenergic reactivity (hypertension in SHR and renovascular rat models) and hypernoradrenergic innervation (epilepsy in the tottering-mouse model). Specific Aim 3 is to determine whether or not D2-values are sensitive to therapeutic interventions. If D2 is found to be sensitive to normal and abnormal cortical functioning, then its use can be developed for the diagnosis of cerebral (and perhaps preclinical) pathology and the evaluation of therapies. Because of its process-specific signature, D2 can be used to map anatomical loci which contribute to the singular dynamical system. Furthermore, the integer and fractional portions of D2 have theoretical implications regarding the number of independent variables in t e stationary process and whether or not it may factal. (key words: nonlinea dynamics, chaos, fractals, cerebral cortex, event-related potentials, sleep epilepsy, hypertension, noradrenergic response).
非线性数学动力学的使用被认为是革命性的 一些科学,因为确定性模型可以由未解决的 物理和化学现象(例如,布朗运动、湍流、 等)。几个实验室已经尝试将非线性动力学应用于 T 即与人体脑电的关联维(D2)。 我们的实验室持怀疑态度,在表面上验证了他们的一些说法 在一个简单的模型系统中,嗅球的电位)。灯泡有 与新皮质相同的细胞类型和内在神经化学,但有更多 更简单、更了解神经生理学。算法被开发为 估计D2,这导致人们相信低维混沌会 存在于球茎中。利用短暂的纪元和行为控制,平稳性 通过消除虚假的自相关,线性相关- 通过研究已知的混沌,得到积分来计算D2; 吸引子,制定了吸引子的抽样规则。在此之后 经验,我们现在建议确定是否非线性 动力学分析可以应用于真实的新大脑皮层。我们的第一个特定的人工智能 是在各种正常的皮质条件下评估D2:安静 清醒、睡眠和与事件相关的反应。因为它的敏感性 在D2-MEOSCRE及其潜在的临床应用中,特定的目标2是 要在大脑皮层已知的病理条件下评估D2: 高去甲肾上腺素能反应性(SHR和肾血管大鼠的高血压 模型)和高去甲肾上腺素能神经支配(摇摇欲坠小鼠的癫痫 模型)。具体目标3是确定D2值是否为 对治疗干预敏感。如果D2被发现对 正常和异常的皮质功能,那么它的使用可以开发用于 脑部(可能是临床前)病理的诊断和 对治疗的评估。由于其特定于进程的签名,D2可以 用于绘制有助于奇异动力学的解剖轨迹图 系统。此外,D2的整数和小数部分具有 关于t中自变量个数的理论意义 E 平稳的过程以及它是否真实存在。(关键词:非线性 动力学、混沌、分形学、大脑皮层、事件相关电位、睡眠 癫痫、高血压、去甲肾上腺素能反应)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES E SKINNER其他文献

JAMES E SKINNER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES E SKINNER', 18)}}的其他基金

INFRARED SPECTROSCOPY OF AMYLOID
淀粉样蛋白的红外光谱
  • 批准号:
    8171775
  • 财政年份:
    2010
  • 资助金额:
    $ 18.36万
  • 项目类别:
INFRARED SPECTROSCOPY OF AMYLOID
淀粉样蛋白的红外光谱
  • 批准号:
    7956305
  • 财政年份:
    2009
  • 资助金额:
    $ 18.36万
  • 项目类别:
PD2i ANALYSIS OF R-R INTERVALS IN HIGH-RISK ER PATIENTS
高危 ER 患者 R-R 间隔的 PD2i 分析
  • 批准号:
    6852908
  • 财政年份:
    2003
  • 资助金额:
    $ 18.36万
  • 项目类别:
PD2i ANALYSIS OF R-R INTERVALS IN HIGH-RISK ER PATIENTS
高危 ER 患者 R-R 间隔的 PD2i 分析
  • 批准号:
    6586960
  • 财政年份:
    2003
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW DIMENSIONAL CHAOS IN NEUROCARDIAC SYSTEMS
神经心脏系统中的低维混沌
  • 批准号:
    2037360
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW-DIMENSIONAL CHAOS IN NEOCORTEX
新皮质中的低维混沌
  • 批准号:
    3414144
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW DIMENSIONAL CHAOS IN NEUROCARDIAC SYSTEMS
神经心脏系统中的低维混沌
  • 批准号:
    2891758
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW-DIMENSIONAL CHAOS IN NEOCORTEX
新皮质中的低维混沌
  • 批准号:
    3414145
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW DIMENSIONAL CHAOS IN NEUROCARDIAC SYSTEMS
神经心脏系统中的低维混沌
  • 批准号:
    2750842
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
LOW-DIMENSIONAL CHAOS IN NEOCORTEX
新皮质中的低维混沌
  • 批准号:
    3414146
  • 财政年份:
    1989
  • 资助金额:
    $ 18.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了