New Directions in Molecular Superconductivity

分子超导的新方向

基本信息

  • 批准号:
    EP/K027255/1
  • 负责人:
  • 金额:
    $ 51.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The design of superconducting materials in order to achieve higher transition temperatures (Tc) to the zero-resistance state has been recognised by recent international and national reviews as at the extreme forefront of current challenges in condensed matter science with potential for transforming existing and enabling new technologies of tremendous economic and societal benefits in energy and healthcare. Achieving the zero-resistance state requires close control of the interactions of electrons with each other (known as electron correlation) and with lattice vibrations (phonons). This project addresses these challenges by building on EPSRC-supported collaborative work by the project team, which has shown that high Tc superconductivity, defined both in terms of transition temperature and the key role played by electronic correlations, is accessible in molecular systems. In the fullerene-based molecular superconductors, superconductivity occurs in competition with electronic ground states resulting from a fine balance between electron correlations and electron-phonon coupling in an electronic phase diagram strikingly similar to that of the atom-based copper oxide high Tc superconductors, where correlation plays a key role. A second molecular superconductor family with transition temperatures over 30 K, based on metal intercalation into aromatic hydrocarbons, has also been reported. It is therefore timely to optimise and understand superconducting materials made from molecules arranged in regular solid structures.The scope of synthetic chemistry to tailor molecular electronic and geometric structure makes the development of molecular superconducting systems important, because this chemical control of the fundamental building units of a superconductor is not possible in atom-based systems. The molecular systems are the only current candidates for the important target of isotropic correlated electron superconductivity. We will exploit these opportunities by integration of new chemistry with new physical understanding, exemplified by revealing how changes in molecular-level orbital degeneracy driven by chemical control of molecular charge and overlap direct the electronic structure of an extended solid. We will develop the new chemistry of the molecular solid state that will be needed for this level of electronic structure control, in particular mastering the chemistry of metal intercalation into hydrocarbons. This new materials chemistry will include the use of new building blocks (such as endohedral metallofullerenes) and will harness the assimilation of defects to access new molecular packings, motivated by our discovery that different packings of the same molecular unit give different Tc and distinct electronic properties. Further structural control will be exercised by binding small molecules to the cations intercalated into the molecular lattices. The synthesis of metal-intercalated solids based on multiple molecular components will be undertaken to permit detailed optimisation of the electronic structure. We will thus specifically exploit the molecular system advantages of isotropy, packing and molecular-level electronic structure control by developing the new chemistry of the molecular solid state needed to establish the new electronic ground states.Physical understanding of the structural and chemical origins of the new electronic states is essential to identify the factors controlling the electron pairing in the superconductors. This understanding will emerge from an integrated investigation of the insulator-metal-superconductor competition, spanning thermodynamic, spectroscopic and electronic property measurements closely linked to comprehensive structural work in order to produce the structure-composition-property relationships required for the design of next generation systems. The project benefits from an international multidisciplinary collaborative team to ensure all relevant techniques are deployed.
超导材料的设计,以实现更高的转变温度(Tc)的零电阻状态已被最近的国际和国家审查认为是在凝聚态科学的当前挑战的最前沿,有可能改变现有的和使新技术的巨大经济和社会效益的能源和医疗保健。实现零电阻状态需要密切控制电子之间的相互作用(称为电子相关)和晶格振动(声子)。该项目通过建立在EPSRC支持的项目团队的合作工作来解决这些挑战,该项目表明,在转变温度和电子相关性所起的关键作用方面定义的高Tc超导性在分子系统中是可访问的。在基于富勒烯的分子超导体中,超导性发生在与电子基态的竞争中,这是由于电子相图中电子相关性和电子-声子耦合之间的精细平衡,与基于原子的氧化铜高Tc超导体惊人地相似,其中相关性起着关键作用。第二个分子超导体家族的转变温度超过30 K,基于金属嵌入到芳烃,也有报道。因此,优化和理解由规则固体结构排列的分子制成的超导材料是及时的。合成化学的范围可以定制分子电子和几何结构,这使得分子超导系统的开发变得重要,因为这种对基本结构单元的化学控制在基于原子的系统中是不可能的。分子系统是目前唯一的候选者的重要目标的各向同性相关电子超导性。我们将利用这些机会,通过整合新的化学与新的物理理解,例如揭示如何在分子水平的轨道简并的变化驱动的化学控制的分子电荷和重叠直接扩展固体的电子结构。我们将开发这种电子结构控制水平所需的分子固态的新化学,特别是掌握金属嵌入碳氢化合物的化学。这种新材料化学将包括使用新的构建块(如内嵌金属富勒烯),并将利用缺陷的同化来获得新的分子包装,这是由于我们发现相同分子单元的不同包装会产生不同的Tc和不同的电子特性。进一步的结构控制将通过将小分子结合到插入分子晶格中的阳离子来实现。将进行基于多个分子组分的金属插层固体的合成,以允许电子结构的详细优化。因此,我们将具体开发的各向同性,包装和分子水平的电子结构控制的分子系统的优势,通过开发新的化学的分子固态需要建立新的电子基态。物理理解的结构和化学起源的新的电子状态是必不可少的,以确定在超导体中的电子配对的控制因素。这种理解将出现从绝缘体-金属-超导体竞争的综合调查,跨越热力学,光谱和电子性能测量密切相关的全面的结构工作,以产生下一代系统的设计所需的结构-成分-性能的关系。该项目受益于一个国际多学科合作团队,以确保部署所有相关技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kosmas Prassides其他文献

Quantum magnetism in fully-frustrated all-carbon pi-electron systems
全受抑全碳π电子系统中的量子磁性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosmas Prassides
  • 通讯作者:
    Kosmas Prassides
Emergent Electronic Phenomena in All-Carbon π-Electron Molecular Systems
全碳π电子分子系统中的新兴电子现象
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosmas Prassides
  • 通讯作者:
    Kosmas Prassides
Emergent electronic phenomena in mixed valence rare-earth fullerides
混合价稀土富勒烯中的新兴电子现象
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    赤澤仁寿;下澤雅明;山下穣;高阪勇輔;秋光純;土屋直人;井上克也;J. Zaccaro;I. Gautier-Luneau;D. Luneau;Kosmas Prassides
  • 通讯作者:
    Kosmas Prassides
Carbon-based molecular materials as new electronic materials platforms
碳基分子材料作为新型电子材料平台
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    楊旭;楊暁喆;川合健太郎;有馬健太;山村和也;Kosmas Prassides
  • 通讯作者:
    Kosmas Prassides
四国遍路の成立と発展―四国と阿波の求心力―
四国朝圣的建立和发展 - 四国与阿波之间的向心力 -
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    和泉正成;坂田雅文;酒井優介;Lu Zheng;後藤秀徳;中本有紀;加賀山朋子;清水克哉;恩地大紀;荒木新吾;小林達生;Kosmas Prassides;久保園芳博;高橋滋;横山伊徳;山根悠介・Rahul Mahanta;胡光
  • 通讯作者:
    胡光

Kosmas Prassides的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kosmas Prassides', 18)}}的其他基金

Superconductivity and magnetism at and above 38K in molecular materials
分子材料中38K及以上的超导和磁性
  • 批准号:
    EP/G037949/1
  • 财政年份:
    2009
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant

相似海外基金

Clinicopathological and molecular characterization of tumors with various directions of differentiation
不同分化方向肿瘤的临床病理学和分子特征
  • 批准号:
    20K16167
  • 财政年份:
    2020
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New Directions in Molecular Scattering: Multiple Pathways and Products
分子散射的新方向:多种途径和产品
  • 批准号:
    EP/T021675/1
  • 财政年份:
    2020
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant
Development of molecular ferroelectric crystals using plastic ionic crystals: flexible control over crystal orientations and polarization directions
使用塑料离子晶体开发分子铁电晶体:灵活控制晶体取向和极化方向
  • 批准号:
    16H04126
  • 财政年份:
    2016
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027255/2
  • 财政年份:
    2015
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027212/1
  • 财政年份:
    2013
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant
Analysis of molecular mechanisms to control two electron transfer directions in photosynthetic reaction centers
控制光合反应中心两个电子转移方向的分子机制分析
  • 批准号:
    24570183
  • 财政年份:
    2012
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Future directions for molecular programming: DNA17 special session
分子编程的未来方向:DNA17 特别会议
  • 批准号:
    1143993
  • 财政年份:
    2011
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Molecular Electroanalytical Chemistry: New Directions in Structures and Reactions of Organometallic Radicals
分子电分析化学:有机金属自由基结构和反应的新方向
  • 批准号:
    0411703
  • 财政年份:
    2004
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
ITR/AP: Large-Scale Quantum Mechanical Molecular Dynamics Simulations: Challenges, New Directions, and Applications to Carbon-Based Nanostructures
ITR/AP:大规模量子力学分子动力学模拟:碳基纳米结构的挑战、新方向和应用
  • 批准号:
    0112824
  • 财政年份:
    2001
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Support for Workshop on Future Directions in Molecular Modeling and Simulation: Fundamentals and Applications, to be held in Arlington, VA, November 1997
支持分子建模和模拟未来方向研讨会:基础和应用,将于 1997 年 11 月在弗吉尼亚州阿灵顿举行
  • 批准号:
    9801293
  • 财政年份:
    1997
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了