New Directions in Molecular Superconductivity
分子超导的新方向
基本信息
- 批准号:EP/K027255/2
- 负责人:
- 金额:$ 32.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of superconducting materials in order to achieve higher transition temperatures (Tc) to the zero-resistance state has been recognised by recent international and national reviews as at the extreme forefront of current challenges in condensed matter science with potential for transforming existing and enabling new technologies of tremendous economic and societal benefits in energy and healthcare. Achieving the zero-resistance state requires close control of the interactions of electrons with each other (known as electron correlation) and with lattice vibrations (phonons). This project addresses these challenges by building on EPSRC-supported collaborative work by the project team, which has shown that high Tc superconductivity, defined both in terms of transition temperature and the key role played by electronic correlations, is accessible in molecular systems. In the fullerene-based molecular superconductors, superconductivity occurs in competition with electronic ground states resulting from a fine balance between electron correlations and electron-phonon coupling in an electronic phase diagram strikingly similar to that of the atom-based copper oxide high Tc superconductors, where correlation plays a key role. A second molecular superconductor family with transition temperatures over 30 K, based on metal intercalation into aromatic hydrocarbons, has also been reported. It is therefore timely to optimise and understand superconducting materials made from molecules arranged in regular solid structures.The scope of synthetic chemistry to tailor molecular electronic and geometric structure makes the development of molecular superconducting systems important, because this chemical control of the fundamental building units of a superconductor is not possible in atom-based systems. The molecular systems are the only current candidates for the important target of isotropic correlated electron superconductivity. We will exploit these opportunities by integration of new chemistry with new physical understanding, exemplified by revealing how changes in molecular-level orbital degeneracy driven by chemical control of molecular charge and overlap direct the electronic structure of an extended solid. We will develop the new chemistry of the molecular solid state that will be needed for this level of electronic structure control, in particular mastering the chemistry of metal intercalation into hydrocarbons. This new materials chemistry will include the use of new building blocks (such as endohedral metallofullerenes) and will harness the assimilation of defects to access new molecular packings, motivated by our discovery that different packings of the same molecular unit give different Tc and distinct electronic properties. Further structural control will be exercised by binding small molecules to the cations intercalated into the molecular lattices. The synthesis of metal-intercalated solids based on multiple molecular components will be undertaken to permit detailed optimisation of the electronic structure. We will thus specifically exploit the molecular system advantages of isotropy, packing and molecular-level electronic structure control by developing the new chemistry of the molecular solid state needed to establish the new electronic ground states.Physical understanding of the structural and chemical origins of the new electronic states is essential to identify the factors controlling the electron pairing in the superconductors. This understanding will emerge from an integrated investigation of the insulator-metal-superconductor competition, spanning thermodynamic, spectroscopic and electronic property measurements closely linked to comprehensive structural work in order to produce the structure-composition-property relationships required for the design of next generation systems. The project benefits from an international multidisciplinary collaborative team to ensure all relevant techniques are deployed.
超导材料的设计是为了实现较高的过渡温度(TC)到零电阻状态的设计,最近的国际和国家评论已认可了当前在浓缩物质科学中挑战的极端最前沿,并有可能改变现有的和能够在能源和医疗保健领域进行巨大经济和社会益处的新技术。实现零耐药状态需要密切控制电子相互作用(称为电子相关)和晶格振动(声子)。该项目通过在EPSRC支持的协作工作中构建项目团队来解决这些挑战,该项目表明,在分子系统中可以访问高的TC超导性,该项目在过渡温度和电子相关性中扮演的关键作用都可以访问。在基于富勒烯的分子超导体中,超导性发生在与电子基接地态竞争中,这是由于电子相关性与电子相图中的电子相关之间的良好平衡引起的,与原子基氧化物基于原子的铜氧化物高的TC超导导器相似,在该图中具有较高的角色。还报道了基于金属插入芳族碳氢化合物的第二个分子超导体家族,其过渡温度超过30 K。因此,及时优化和理解由定期固体结构排列的分子制成的超导材料。合成化学对量身定制的分子电子和几何结构的范围使得分子超导系统的发展很重要,因为这种化学的化学控制是对超管制基于ATOM基于ATOM基于ATOM基于ATOM基于Atom基于ATOM的系统的基本建筑单位的控制。分子系统是各向同性相关电子超导性重要目标的唯一当前候选者。我们将通过将新化学反应与新的物理理解结合结合来利用这些机会,以揭示分子电荷的化学控制和重叠的分子水平轨道退化的变化,并指导扩展固体的电子结构。我们将开发分子固态的新化学性质,该化学态将是这种水平的电子结构控制所需的,特别是掌握了金属插入到碳氢化合物中的化学性质。这种新材料化学将包括使用新的构建块(例如内螺级金属氟烯烯),并将利用缺陷的同化来访问新的分子包装,这是由于我们发现的发现,同一分子单位的不同包装提供了不同的TC和不同的电子特性。通过将小分子与插入分子晶格的阳离子结合,将进行进一步的结构控制。将进行基于多个分子成分的金属切割固体的合成,以允许对电子结构进行详细的优化。因此,我们将通过开发建立新的电子接地态所需的分子固态的新化学方法来特异性利用各向同性,填料和分子级电子结构控制的分子系统优势。对新电子状态的结构和化学起源所需的分子固态的新化学性能对于确定控制超级标能中的电子配对的因素至关重要。这种理解将从对绝缘体 - 金属 - 控制器竞争的综合研究中得出,该竞争涵盖了热力学,光谱和电子特性测量,与全面的结构工作紧密相关,以便产生结构化的下一代系统设计所需的结构构成 - 属性关系。该项目受益于国际多学科合作团队,以确保部署所有相关技术。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized unconventional superconductivity in a molecular Jahn-Teller metal.
- DOI:10.1126/sciadv.1500059
- 发表时间:2015-04
- 期刊:
- 影响因子:13.6
- 作者:Zadik RH;Takabayashi Y;Klupp G;Colman RH;Ganin AY;Potočnik A;Jeglič P;Arčon D;Matus P;Kamarás K;Kasahara Y;Iwasa Y;Fitch AN;Ohishi Y;Garbarino G;Kato K;Rosseinsky MJ;Prassides K
- 通讯作者:Prassides K
Reactivity of Solid Rubrene with Potassium: Competition between Intercalation and Molecular Decomposition.
- DOI:10.1021/jacs.8b11231
- 发表时间:2018-11
- 期刊:
- 影响因子:15
- 作者:Jiliang Zhang;G. Whitehead;T. Manning;D. Stewart;C. I. Hiley;M. J. Pitcher;S. Jansat;K. Prassides;M. Rosseinsky
- 通讯作者:Jiliang Zhang;G. Whitehead;T. Manning;D. Stewart;C. I. Hiley;M. J. Pitcher;S. Jansat;K. Prassides;M. Rosseinsky
Detection and Crystal Structure of Hydrogenated Bipentacene as an Intermediate in Thermally Induced Pentacene Oligomerization.
氢化双并五苯作为热诱导并五苯齐聚中间体的检测和晶体结构。
- DOI:10.1021/acs.joc.9b00671
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hiley CI
- 通讯作者:Hiley CI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
- 批准号:
EP/S026339/1 - 财政年份:2019
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R011753/1 - 财政年份:2018
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:
EP/N004884/1 - 财政年份:2015
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:
EP/H046143/1 - 财政年份:2010
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
相似国自然基金
有机高分子材料学科申请代码关联研究方向及关键词优化研究
- 批准号:52242307
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:专项项目
基于三维结构指导重组塞内加谷病毒在基因治疗方向的优化
- 批准号:31900864
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
柳树SPR基因家族调控微管延伸方向分子机理的研究
- 批准号:31400569
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
一维方向分子间作用力对Gemini表面活性剂蠕虫状胶束体系粘弹性质的影响
- 批准号:21203078
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
调控烟草合子细胞分裂方向的分子机制及其对顶、基细胞发育命运的影响
- 批准号:31170297
- 批准年份:2011
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
FASEB SRC: Matricellular Proteins: Fundamental Concepts and New Directions
FASEB SRC:基质细胞蛋白:基本概念和新方向
- 批准号:
10468385 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
New Directions in Molecular Scattering: Multiple Pathways and Products
分子散射的新方向:多种途径和产品
- 批准号:
EP/T021675/1 - 财政年份:2020
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
A new physical parameter to describe the detection thresholds of Etched Track Detectors
描述蚀刻轨迹探测器检测阈值的新物理参数
- 批准号:
19K12643 - 财政年份:2019
- 资助金额:
$ 32.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)