Energy and the Physical Sciences: Semiconductor III-V Quantum-Dot Solar Cells on Silicon Substrates
能源和物理科学:硅衬底上的半导体 III-V 量子点太阳能电池
基本信息
- 批准号:EP/K029665/1
- 负责人:
- 金额:$ 45.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To help combat climate change, the UK has a target to reduce carbon emissions by 80% by 2050. This is an enormous task requiring changes to energy generation and supply. To limit the impact on scarce natural resources and the environment, these reductions need to be delivered by providing affordable green energy. The proposed programme will address this very target by developing high-efficiency and low-cost solar cells by growing III-V compound semiconductor self-organised structures on cheap and plentiful silicon. This proposal directly contributes to development of new solar materials and devices to enable the UK to lead in this priority area. The widespread implementation of photovoltaics (PV) [the conversion of sunlight into voltage and therefore power] and solar cells as one means of reaching sustainable energy production for the planet will require vast areas of semiconductor materials to be structured into PV cells in order to capture the power of sunlight. There are two general approaches taken: either to use very large area, low-cost and low-efficiency semiconductor materials (such as organic materials) or to use small-area highly-efficient but expensive semiconductor materials and concentrate the light into the small-area, Concentrator Photovoltaics (CPV). The cost of the housing is a significant cost of the PV cell and therefore making the material cheaper for the large area PV does not improve cost below a certain value. The efficiency of the CPV cells is being improved continuously by improved design, growth and fabrication. Experimentally III-V compound semiconductor CPV cells have recently achieved efficiencies of >40% making them the highest efficiency PV available in any technology. Further increase of efficiency for CPVs is the key for utilizing solar energy worldwide.There are two main design approaches to inorganic III-V semiconductor CPV solar cells: Multi-jumction SCs (MJSCs) and intermediate band solar cells (IBSCs). In MJSCs a number of semiconductor material junctions are connected in-series, each designed to efficiently absorb a section of the solar spectrum appropriate to its bandgap with the largest bandgap material placed at the front and the smallest bandgap material placed at the back. A single junction SC has a maximum predicted efficiency of 30% while a double-junction comprised of two optimised bandgaps increases the predicted efficiency to 41%. Much effort has gone into designing a number of MJSCs with an increased number of junctions. Intense effort is going into investigating materials to absorb near the peak of the spectrum around 1.0 eV. We propose to use 1.0-eV bandgap Quantum Dots (QDs) as a solution for this. A QD is one semiconductor embedded into another and arises from self-organised growth. QDs enable material combinations to be grown together that would not normally occur in a planar environment as strain is incorporated into the interface-this allows novel materials to be combined in a QD system opening up new material combinations and allowing these materials to be grown on silicon using only a thin germanium sandwich layer.In IBSCs an intermediate energy band (IB) is introduced into the energy gap of the single semiconductor material junction introducing three possible optical transitions. The photo-generated carriers in the intermediate level must only link to the host material through optical transitions for the IBSC to function correctly. The IBSC with one IB level is predicted to have ultra-high conversion efficiency up to 63% while increasing the number of IB levels up to 4 is predicted to increase efficiencies up to 80%. However these high efficiencies are not observed experimentally. We will investigate using QD systems to make IBSCs.We will exploit the advantages of both QD technology and germanium-on-silicon substrates to develop the low-cost and high-efficiency III-V/Si solar cells of both MJSC and IBSC design.
为了帮助应对气候变化,英国的目标是到2050年将碳排放量减少80%。这是一项艰巨的任务,需要改变能源的生产和供应。为了限制对稀缺自然资源和环境的影响,需要通过提供负担得起的绿色能源来实现这些减排。拟议的计划将通过在廉价和丰富的硅上生长III-V族化合物半导体自组织结构来开发高效率和低成本的太阳能电池来实现这一目标。该提案直接有助于开发新的太阳能材料和设备,使英国能够在这一优先领域发挥领导作用。作为实现地球可持续能源生产的一种手段,光伏(PV)[将阳光转换为电压,从而转换为电力]和太阳能电池的广泛应用将需要将大面积的半导体材料结构化为光伏电池,以捕获阳光的电力。一般有两种方法:要么使用非常大面积,低成本和低效率的半导体材料(如有机材料),要么使用小面积高效但昂贵的半导体材料,并将光集中到小面积聚光器(CPV)中。壳体的成本是PV电池的显著成本,因此使材料对于大面积PV更便宜不会将成本提高到低于某个值。CPV电池的效率通过改进设计、生长和制造而不断提高。在实验上,III-V族化合物半导体CPV电池最近已经实现了>40%的效率,使其成为任何技术中可用的最高效率PV。进一步提高太阳能光伏电池的效率是世界范围内太阳能利用的关键,目前无机Ⅲ-Ⅴ族半导体太阳能光伏电池的设计主要有两种:多跨导太阳能电池(Multi-jumbersSCs,MJSC)和中间带太阳能电池(Intermediate Band Solar Cell,IBSC)。在MJSC中,多个半导体材料结串联连接,每个半导体材料结被设计为有效地吸收适合于其带隙的太阳光谱的一部分,其中最大带隙材料放置在前面,最小带隙材料放置在后面。单结SC具有30%的最大预测效率,而由两个优化的带隙组成的双结将预测效率提高到41%。许多努力已经投入到设计具有增加数量的接头的多个MJSC中。人们正在努力研究在1.0 eV左右的光谱峰值附近吸收的材料。我们建议使用1.0-eV带隙量子点(QD)作为解决方案。量子点是一个半导体嵌入另一个半导体中,并从自组织生长中产生。QD使得材料组合能够一起生长,这在平面环境中通常不会发生,因为应变被并入界面中-这允许新材料在QD系统中组合,从而打开新材料组合,并允许这些材料仅使用薄锗夹层在硅上生长。被引入到单个半导体材料结的能隙中,从而引入三种可能的光学跃迁。中间能级的光生载流子必须通过光学跃迁与基质材料连接,才能使IBSC正常工作。具有一个IB级的IBSC预计具有高达63%的超高转换效率,而将IB级的数量增加到4预计将效率提高到80%。然而,这些高效率在实验中没有观察到。我们将研究使用量子点系统来制造IBSC。我们将利用量子点技术和硅基锗衬底的优势来开发低成本和高效率的III-V/Si太阳能电池,包括MJSC和IBSC设计。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical gain in GaAsBi/GaAs quantum well diode lasers.
- DOI:10.1038/srep28863
- 发表时间:2016-07-01
- 期刊:
- 影响因子:4.6
- 作者:Marko IP;Broderick CA;Jin S;Ludewig P;Stolz W;Volz K;Rorison JM;O'Reilly EP;Sweeney SJ
- 通讯作者:Sweeney SJ
Giant bowing of the band gap and spin-orbit splitting energy in GaP1-xBix dilute bismide alloys
- DOI:10.1038/s41598-019-43142-5
- 发表时间:2019-05-02
- 期刊:
- 影响因子:4.6
- 作者:Bushell, Zoe L.;Broderick, Christopher A.;Sweeney, Stephen J.
- 通讯作者:Sweeney, Stephen J.
Modelling escape and capture processes in GaInNAs quantum well solar cells
GaInNAs 量子阱太阳能电池中的逃逸和捕获过程建模
- DOI:10.1002/pssc.201200482
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Kengradomying O
- 通讯作者:Kengradomying O
Theory of InGaBiAs dilute bismide alloys for highly efficient InP-based mid-infrared semiconductor lasers
用于高效InP基中红外半导体激光器的InGaBiAs稀双胺合金理论
- DOI:10.1109/nusod.2016.7547020
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Broderick C
- 通讯作者:Broderick C
GaAs-based dilute bismide semiconductor lasers: Theory vs. experiment
GaAs 基稀双胺半导体激光器:理论与实验
- DOI:10.1109/nusod.2016.7546999
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Broderick C
- 通讯作者:Broderick C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judy Rorison其他文献
Investigations of Repetition Rate Stability of a Mode-Locked Quantum Dot Semiconductor Laser in an Auxiliary Optical Fiber Cavity
辅助光纤腔锁模量子点半导体激光器重复率稳定性研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.5
- 作者:
S. Breuer;W. Elsaber;John G. McInerney;Kresten Yvind;Jose Pozo;E. Bente;Mirvais Yousefi;Asier Villafranca;Nikos Vogiatzis;Judy Rorison - 通讯作者:
Judy Rorison
Judy Rorison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judy Rorison', 18)}}的其他基金
Electrically Pumped Broad Band and Vertical Cavity Semiconductor Dilute Nitride Amplifiers for Metro and Acess Networks
适用于城域和接入网络的电泵宽带和垂直腔半导体稀氮化物放大器
- 批准号:
EP/G026009/1 - 财政年份:2009
- 资助金额:
$ 45.44万 - 项目类别:
Research Grant
相似国自然基金
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: High Performance Computing (HPC) Tools, Techniques, and Research across the Physical Sciences
REU 网站:跨物理科学领域的高性能计算 (HPC) 工具、技术和研究
- 批准号:
2348782 - 财政年份:2024
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant
An Integrative National Infrastructure for Ultra-High-Field NMR in the Physical and Life Sciences
物理和生命科学领域超高场核磁共振综合国家基础设施
- 批准号:
EP/X01987X/1 - 财政年份:2023
- 资助金额:
$ 45.44万 - 项目类别:
Research Grant
Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
- 批准号:
BB/X005038/1 - 财政年份:2023
- 资助金额:
$ 45.44万 - 项目类别:
Research Grant
The Inclusive Mathematical and Physical Sciences Student Success Program
包容性数学和物理科学学生成功计划
- 批准号:
2322454 - 财政年份:2023
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant
Life and physical sciences interface: Topological underpinnings of data with application to biological sciences
生命与物理科学接口:数据的拓扑基础及其在生物科学中的应用
- 批准号:
BB/X004244/1 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Research Grant
REU Site: Weather, Climate, and Society: An Interdisciplinary approach integrating physical and social sciences
REU 网站:天气、气候和社会:整合物理和社会科学的跨学科方法
- 批准号:
2149860 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant
Chesapeake Scholars in the Physical Sciences
切萨皮克物理科学学者
- 批准号:
2221369 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant
Providing Academic, Co-curricular and Scholarship Supports for Talented Students Pursuing Associate's, Bachelor's and Master's Degrees in the Physical Sciences.
为攻读物理科学副学士学位、学士和硕士学位的优秀学生提供学术、课外活动和奖学金支持。
- 批准号:
2221549 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant
Stopped-Flow NMR Spectroscopy for the Physical and Life Sciences
适用于物理和生命科学的停流核磁共振波谱分析
- 批准号:
EP/W02151X/1 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Research Grant
Conference: Chemical Sensing Innovation: Harnessing Recent Advances in Biological, Physical, Chemical and Data sciences for Engineering Next Generation Electronic Noses
会议:化学传感创新:利用生物、物理、化学和数据科学的最新进展设计下一代电子鼻
- 批准号:
2231526 - 财政年份:2022
- 资助金额:
$ 45.44万 - 项目类别:
Standard Grant