Excitations, Rotational Dynamics, and Rotational Sensing in 2-Species Bose-Einstein Condensates
两种玻色-爱因斯坦凝聚体中的激发、旋转动力学和旋转传感
基本信息
- 批准号:EP/K030558/1
- 负责人:
- 金额:$ 92.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our research involves the theoretical and experimental investigation of quantum many-body dynamics in systems of ultra-cold atoms, with the view of developing next-generation rotational sensors, and developing tools for and improving our general understanding of interacting many-body systems far from equilibrium. The central idea is based on using ultra-cold atoms with bosonic spin statistics, in contrast to e.g., electrons orbiting an atomic nucleus, where two electrons with the same spin cannot occupy exactly the same energy level or orbital (fermionic spin statistics). This means that at sufficiently low temperatures a dilute atomic gas composed of such bosonic atoms undergoes a particular kind of phase transition. A phase transition is a sudden, qualitative change of state, like and ordinary gas condensing to a liquid state as the temperature is lowered. The state of matter reached in the case of very dilute, low temperature bosonic atoms is called a Bose-Einstein condensate. This can be seen as the atomic/matter equivalent of a laser; a coherent, intense source of atoms, with consequent advantages to measurement science or metrology (which in the case of light are limited by the minimum wavelength for the light to be visible and controlled by conventional optics). Atom-atom interactions are, unfortunately, typically problematical, and tend to counteract the advantages of a coherent atomic source. We will build upon a proposal (suggested one of the investigators) where the issues associated with atom-atom interactions appear to be largely avoided due to an astutely chosen experimental geometry. In the process of investigating this proposed system as well as a number of closely related issues, we will deepen our understanding of nonequilibrium dynamics (due, for example, to the crucial importance of avoiding such things as flow instabilities in any functioning rotational senser), and develop broadly applicable theoretical tools accounting for the influence and production of complicated many-body effects. As such our research falls within the EPSRC Physics Grand Challenges "Emergence and Physics Far From Equilibrium" (motivated by the fact that "dramatic collective behaviour can emerge unexpectedly in large complicated systems" and "This fundamental work will be driven by the ever-present possibility that emergent states may provide the foundations for the technologies of the future") and "Quantum Physics for New Quantum Technologies" (motivated by "Next generation quantum technologies will rely on our understanding and exploitation of coherence and entanglement" and "Success requires a deeper understanding of quantum physics and a broad ranging development of the enabling tools and technologies").Ultracold atoms are an ideal configuration in which to investigate dynamics far from equilibrium, due to a very high degree of flexibility in their experimental configurations (varying the experimental geometry, strength of interaction, and even whether the interactions are attractive or repulsive, by appropriate combinations of magnetic, laser and microwave fields), and atomic, molecular and optical (AMO) physics systems have a superlative record in terms of precision measurement, most notably in the form of atomic clocks, which, for example, underpin the functioning of the global positioning system (GPS).
我们的研究涉及超冷原子系统中量子多体动力学的理论和实验研究,旨在开发下一代旋转传感器,开发工具并提高我们对远离平衡的相互作用多体系统的总体理解。其中心思想是基于使用具有玻色子自旋统计的超冷原子,与之相反,电子围绕原子核旋转,其中具有相同自旋的两个电子不能占据完全相同的能级或轨道(费米子自旋统计)。这意味着,在足够低的温度下,由这种玻色子原子组成的稀原子气体会经历一种特殊的相变。相变是一种状态的突然的、质的变化,就像普通的气体随着温度的降低而冷凝成液态一样。在非常稀的低温玻色子原子的情况下达到的物质状态被称为玻色-爱因斯坦凝聚。这可以被看作是激光的原子/物质等价物;一种相干的、强烈的原子源,对测量科学或计量学具有随之而来的优势(在光的情况下,其受到光的最小波长的限制,并且由传统光学器件控制)。不幸的是,原子-原子相互作用通常是有问题的,并且往往抵消相干原子源的优点。我们将建立在一个建议(建议的一个研究人员),与原子-原子相互作用的问题似乎在很大程度上避免了由于一个精明的选择实验几何。在研究这个系统以及一些密切相关的问题的过程中,我们将加深对非平衡动力学的理解(例如,由于避免任何功能旋转传感器中的流动不稳定性的至关重要性),并开发广泛适用的理论工具,解释复杂的多体效应的影响和产生。因此,我们的研究福尔斯属于EPSRC物理学大挑战“涌现和远离平衡的物理学”(动机是“戏剧性的集体行为可以在大型复杂系统中意外出现”和“这项基础工作将受到不断存在的可能性的驱动,即紧急状态可能为未来的技术提供基础”)和“新量子技术的量子物理学”(动机是“下一代量子技术将依赖于我们对相干和纠缠的理解和利用”和“成功需要对量子物理学有更深入的理解和对使能工具和技术的广泛发展”)。超冷原子是研究远离平衡的动力学的理想配置,由于其实验配置的高度灵活性(通过磁场、激光场和微波场的适当组合,改变实验几何形状、相互作用的强度,甚至改变相互作用是吸引还是排斥),和原子,分子和光学(AMO)物理系统在精确测量方面有着最好的记录,最显著的是原子钟的形式,例如,原子钟支撑着全球定位系统(GPS)的功能。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry
在窄势垒上分裂明亮的物质波孤子:量子到经典的转变及其在干涉测量中的应用
- DOI:10.1103/physreva.89.033610
- 发表时间:2014
- 期刊:
- 影响因子:2.9
- 作者:Helm J
- 通讯作者:Helm J
Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates.
- DOI:10.1103/physrevlett.120.063201
- 发表时间:2017-01
- 期刊:
- 影响因子:8.6
- 作者:John L. Helm;T. Billam;A. Rakonjac;S. Cornish;Simon A. Gardiner
- 通讯作者:John L. Helm;T. Billam;A. Rakonjac;S. Cornish;Simon A. Gardiner
Sagnac Interferometry Using Bright Matter-Wave Solitons
使用亮物质波孤子的萨格纳克干涉测量
- DOI:10.48550/arxiv.1408.5235
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Helm J
- 通讯作者:Helm J
Phase-matching condition for enhanced entanglement of colliding indistinguishable quantum bright solitons in a harmonic trap
谐波陷阱中碰撞不可区分量子亮孤子增强纠缠的相位匹配条件
- DOI:10.1103/physreva.89.013611
- 发表时间:2014
- 期刊:
- 影响因子:2.9
- 作者:Holdaway D
- 通讯作者:Holdaway D
Entangling two distinguishable quantum bright solitons via collisions
通过碰撞纠缠两个可区分的量子亮孤子
- DOI:10.1088/1742-6596/497/1/012033
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Billam T
- 通讯作者:Billam T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Gardiner其他文献
Simon Gardiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Gardiner', 18)}}的其他基金
Relative Phase and Coherence in Bright Matter-Wave Solitons
亮物质波孤子的相对相位和相干性
- 批准号:
EP/G056781/1 - 财政年份:2009
- 资助金额:
$ 92.31万 - 项目类别:
Research Grant
FINESS 2009 (Finite Temperature Non-Equilibrium Superfluid Systems)
FINESS 2009(有限温度非平衡超流体系统)
- 批准号:
EP/H018093/1 - 财政年份:2009
- 资助金额:
$ 92.31万 - 项目类别:
Research Grant
相似海外基金
New Tools and Applications for Kinetics and Dynamics with Broadband Rotational Spectroscopy
宽带旋转光谱动力学和动力学的新工具和应用
- 批准号:
2247776 - 财政年份:2023
- 资助金额:
$ 92.31万 - 项目类别:
Standard Grant
Dynamics of Molecules in Extreme Rotational States Made with an Optical Centrifuge
用光学离心机制造的极端旋转状态下的分子动力学
- 批准号:
2155135 - 财政年份:2022
- 资助金额:
$ 92.31万 - 项目类别:
Standard Grant
LEAPS-MPS: CAS: Rotational Dynamics of Perfluorinated Carboxylic Acid in the Presence of Helical Chirality
LEAPS-MPS:CAS:螺旋手性存在下全氟羧酸的旋转动力学
- 批准号:
2213264 - 财政年份:2022
- 资助金额:
$ 92.31万 - 项目类别:
Standard Grant
Rotational dynamics and zonal flows of planetary cores
行星核心的旋转动力学和纬向流动
- 批准号:
RGPIN-2018-05796 - 财政年份:2022
- 资助金额:
$ 92.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of wind turbine blades: effects of turbine rotational speed and gravity
风力涡轮机叶片动力学:涡轮机转速和重力的影响
- 批准号:
564178-2021 - 财政年份:2021
- 资助金额:
$ 92.31万 - 项目类别:
University Undergraduate Student Research Awards
Rotational dynamics and zonal flows of planetary cores
行星核心的旋转动力学和纬向流动
- 批准号:
RGPIN-2018-05796 - 财政年份:2021
- 资助金额:
$ 92.31万 - 项目类别:
Discovery Grants Program - Individual
A rotational state-selected molecular beam study on adsorption dynamics on stepped surfaces
阶梯表面吸附动力学的旋转状态选择分子束研究
- 批准号:
20H02623 - 财政年份:2020
- 资助金额:
$ 92.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rotational dynamics and zonal flows of planetary cores
行星核心的旋转动力学和纬向流动
- 批准号:
RGPIN-2018-05796 - 财政年份:2020
- 资助金额:
$ 92.31万 - 项目类别:
Discovery Grants Program - Individual
Rotational dynamics and zonal flows of planetary cores
行星核心的旋转动力学和纬向流动
- 批准号:
RGPIN-2018-05796 - 财政年份:2019
- 资助金额:
$ 92.31万 - 项目类别:
Discovery Grants Program - Individual
Brownian motion dynamics in a mixed medium by translational / rotational displacement statistical analysis of particles
通过颗粒的平移/旋转位移统计分析混合介质中的布朗运动动力学
- 批准号:
19K15510 - 财政年份:2019
- 资助金额:
$ 92.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists