University of Swansea - Equipment Account
斯旺西大学 - 设备帐户
基本信息
- 批准号:EP/K040235/1
- 负责人:
- 金额:$ 103.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Antimatter lies at the heart of one of the most profound mysteries in our current understanding of the universe. Since the discovery of quantum mechanics, the description of the very small, and Einstein's general relativity theory, the description of the very large, the two have been at odds with each other. Quantum mechanics predicts the existence of a mirror image of matter, the so-called antimatter, which was soon confirmed. However, quantum mechanics also predict that the universe should be symmetric with respect to matter and antimatter or in other words that half the universe should be made of antimatter. Until now we have found no evidence of bulk antimatter in the universe a fact that remains a mystery in science. This is where Einstein may perhaps enter the stage. Einstein's theory describes the development of the very large (stars, galaxies, the universe) very well, but it is not compatible with the quantum world. A description of our world capable of encompassing both the very large and the very small has thus far eluded science. Such a description will have to include an explanation for the apparent lack of antimatter in the universe.The recent start up of the LHC forms part of the effort to address this fundamental problem in our understanding of the world around us. This fellowship forms part of another, low energy, approach to the same issue. We are working towards detailed studies of the structure of neutral atoms made of antimatter. According to quantum mechanics their structure should be exactly the same as their matter counterparts. To accomplish this goal we are trapping Antihydrogen and plan to compare it to Hydrogen. As quantum mechanics predicts that these atoms should have identical internal structure to any level of precision, any difference we may discover will deliver ground-breaking information for our understanding of the universe. The making and trapping of these anti-atoms is a delicate affair, and the work here builds on many years of experience in the production of Antihydrogen and the recent successful trapping of the same. The motivation for making atoms is that these are neutral and can be probed by one of the best precision tools available to science - lasers. Precise measurements on atomic systems have been perfected over the last century and the advent of lasers accelerated the field far beyond other fields of precision measurement, such that today, we can measure transitions in atoms with up to 17 decimal places of precision. We plan to apply the techniques with this unfathomable precision to study our trapped Antihydrogen atoms.However, this lofty goal requires very precise control over the formation of the Antihydrogen. The Antihydrogen must be trapped to allow for precise measurements of its internal structure. As Antihydrogen is neutral, it cannot be easily trapped. However, we can trap Antihydrogen in a magnetic trap. This is possible as Antihydrogen, though neutral, has a structure, which causes it to have a small magnetic moment, or in other words behave as a very small magnet. The tricky bit to trapping the Antihydrogen is that this dipole moment is so small, that even with state-of-the-art magnetic fields, our trap can only hold atoms so slow that their energy corresponds to a temperature less than half a degree above absolute zero. We are therefore currently only able to trap about one atom at a time. This project aims to facilitate the production of very cold Antihydrogen by using Beryllium ions, which can be cooled using a technique called laser-cooling. These ions can be cooled to a few thousandth of a degree above absolute zero, and can thus be used as a heat sink for the particles used to form Antihydrogen. This effort will significantly increase the number of trapped atoms and allow us to study the differences between Antihydrogen and Hydrogen in great detail. If any difference is found it will have a profound impact on physics as we know it.
在我们目前对宇宙的理解中,反物质是最深奥的谜团之一的核心。自从量子力学和爱因斯坦的广义相对论被发现以来,两者就一直存在分歧,前者描述的是非常小的物体,后者描述的是非常大的物体。量子力学预言了物质镜像的存在,即所谓的反物质,这很快就得到了证实。然而,量子力学也预测宇宙在物质和反物质方面应该是对称的,换句话说,宇宙的一半应该由反物质组成。到目前为止,我们还没有发现宇宙中存在大量反物质的证据,这一事实在科学界仍然是一个谜。这也许就是爱因斯坦登场的地方。爱因斯坦的理论很好地描述了非常大的(恒星、星系、宇宙)的发展,但它与量子世界不兼容。迄今为止,科学一直无法描述我们的世界,既能涵盖非常大的世界,也能涵盖非常小的世界。这样的描述必须包括对宇宙中明显缺乏反物质的解释。最近启动的大型强子对撞机是解决我们对周围世界的理解中这个基本问题的努力的一部分。这种合作关系是另一种低能量的解决方法的一部分。我们正致力于对由反物质构成的中性原子结构的详细研究。根据量子力学,它们的结构应该与它们的物质对应物完全相同。为了实现这一目标,我们正在捕获反氢,并计划将其与氢进行比较。正如量子力学预测的那样,这些原子在任何精度水平上都应该具有相同的内部结构,我们可能发现的任何差异都将为我们对宇宙的理解提供开创性的信息。制造和捕获这些反原子是一件微妙的事情,这里的工作建立在生产反氢原子的多年经验和最近成功捕获反氢原子的基础上。制造原子的动机是,这些原子是中性的,可以用科学上最精确的工具之一——激光来探测。在上个世纪,对原子系统的精确测量已经得到了完善,激光的出现大大加速了这一领域的发展,远远超过了其他精确测量领域,以至于今天,我们可以精确地测量原子的跃迁,精度可达小数点后17位。我们计划以这种深不可测的精度应用这些技术来研究我们捕获的反氢原子。然而,这个崇高的目标需要非常精确地控制反氢的形成。反氢必须被捕获,以便对其内部结构进行精确测量。由于反氢是中性的,它不容易被捕获。然而,我们可以在磁阱中捕获反氢。这是可能的,因为反氢虽然是中性的,但它的结构使它的磁矩很小,换句话说,它的行为就像一个非常小的磁铁。捕获反氢原子的棘手之处在于,这种偶极矩非常小,即使使用最先进的磁场,我们的陷阱也只能将原子保持在较慢的温度下,使它们的能量相当于绝对零度以上不到半度的温度。因此,我们目前一次只能捕获一个原子。该项目旨在通过使用铍离子来促进极冷反氢的生产,铍离子可以使用一种称为激光冷却的技术进行冷却。这些离子可以冷却到绝对零度以上的千分之几度,因此可以用作形成反氢的粒子的散热器。这一努力将显著增加捕获原子的数量,并使我们能够详细研究反氢和氢之间的差异。如果发现任何差异,它将对我们所知的物理学产生深远的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antihydrogen accumulation for fundamental symmetry tests.
- DOI:10.1038/s41467-017-00760-9
- 发表时间:2017-09-25
- 期刊:
- 影响因子:16.6
- 作者:Ahmadi M;Alves BXR;Baker CJ;Bertsche W;Butler E;Capra A;Carruth C;Cesar CL;Charlton M;Cohen S;Collister R;Eriksson S;Evans A;Evetts N;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Ishida A;Johnson MA;Jones SA;Jonsell S;Kurchaninov L;Madsen N;Mathers M;Maxwell D;McKenna JTK;Menary S;Michan JM;Momose T;Munich JJ;Nolan P;Olchanski K;Olin A;Pusa P;Rasmussen CØ;Robicheaux F;Sacramento RL;Sameed M;Sarid E;Silveira DM;Stracka S;Stutter G;So C;Tharp TD;Thompson JE;Thompson RI;van der Werf DP;Wurtele JS
- 通讯作者:Wurtele JS
An experimental limit on the charge of antihydrogen.
- DOI:10.1038/ncomms4955
- 发表时间:2014-06-03
- 期刊:
- 影响因子:16.6
- 作者:Amole C;Ashkezari MD;Baquero-Ruiz M;Bertsche W;Butler E;Capra A;Cesar CL;Charlton M;Eriksson S;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Jonsell S;Kurchaninov L;Little A;Madsen N;McKenna JT;Menary S;Napoli SC;Nolan P;Olchanski K;Olin A;Povilus A;Pusa P;Rasmussen CØ;Robicheaux F;Sarid E;Silveira DM;So C;Tharp TD;Thompson RI;van der Werf DP;Vendeiro Z;Wurtele JS;Zhmoginov AI;Charman AE
- 通讯作者:Charman AE
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment
- DOI:10.1103/physrevaccelbeams.26.040101
- 发表时间:2023-04-21
- 期刊:
- 影响因子:1.7
- 作者:Baker, C. J.;Bertsche, W.;Wurtele, J. S.
- 通讯作者:Wurtele, J. S.
Antihydrogen trapping assisted by sympathetically cooled positrons
- DOI:10.1088/1367-2630/16/6/063046
- 发表时间:2014-06-19
- 期刊:
- 影响因子:3.3
- 作者:Madsen, N.;Robicheaux, F.;Jonsell, S.
- 通讯作者:Jonsell, S.
Antihydrogen studies in ALPHA
ALPHA 中的反氢研究
- DOI:10.1088/1742-6596/770/1/012021
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Madsen N
- 通讯作者:Madsen N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Wilks其他文献
Steve Wilks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Wilks', 18)}}的其他基金
Swansea University - Capital Award for Core Equipment
斯旺西大学 - 核心设备资本奖
- 批准号:
EP/T024348/1 - 财政年份:2020
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
Swansea University Capital Equipment for ECRs
斯旺西大学 ECR 资本设备
- 批准号:
EP/S017925/1 - 财政年份:2018
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
Advanced Materials equipment refresh
先进材料设备更新
- 批准号:
EP/M028267/1 - 财政年份:2015
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
The Global Hub in Medical Technologies and NanoHealth at Swansea University
斯旺西大学医疗技术和纳米健康全球中心
- 批准号:
EP/K004549/1 - 财政年份:2012
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
相似海外基金
Industrial CASE Account - Swansea University 2024
工业案例账户 - 斯旺西大学 2024
- 批准号:
EP/Z530943/1 - 财政年份:2024
- 资助金额:
$ 103.04万 - 项目类别:
Training Grant
Open Access Block Award 2024 - Swansea University
2024 年开放访问区块奖 - 斯旺西大学
- 批准号:
EP/Z531820/1 - 财政年份:2024
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
Open Access Block Award 2023 - Swansea University
2023 年开放访问区块奖 - 斯旺西大学
- 批准号:
EP/Y530347/1 - 财政年份:2023
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
Industrial CASE Account - Swansea University 2023
工业案例账户 - 斯旺西大学 2023
- 批准号:
EP/Y528638/1 - 财政年份:2023
- 资助金额:
$ 103.04万 - 项目类别:
Training Grant
Swansea TATA Research and Innovation Prosperity Partnership for Printed Perovskite PV (STRIPS)
斯旺西 TATA 印刷钙钛矿光伏研究与创新繁荣合作伙伴关系 (STRIPS)
- 批准号:
EP/X025217/1 - 财政年份:2023
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant
Swansea University and TMT Technology KTP 21_22 R5
斯旺西大学和TMT科技KTP 21_22 R5
- 批准号:
10029233 - 财政年份:2023
- 资助金额:
$ 103.04万 - 项目类别:
Knowledge Transfer Partnership
Swansea University and Hexigone Inhibitors Limited
斯旺西大学和 Hexigone Inhibitors Limited
- 批准号:
10009970 - 财政年份:2022
- 资助金额:
$ 103.04万 - 项目类别:
Knowledge Transfer Partnership
Bridging the Gap: Increasing Social Cohesion and Inclusion in Communities in Swansea
弥合差距:增强斯旺西社区的社会凝聚力和包容性
- 批准号:
2759002 - 财政年份:2022
- 资助金额:
$ 103.04万 - 项目类别:
Studentship
Open Access Block Award 2022 - Swansea University
2022 年开放访问区块奖 - 斯旺西大学
- 批准号:
EP/X526368/1 - 财政年份:2022
- 资助金额:
$ 103.04万 - 项目类别:
Research Grant