Boolean modelling of biochemical networks
生化网络的布尔建模
基本信息
- 批准号:EP/K040987/1
- 负责人:
- 金额:$ 12.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of biological systems, from cells, to organisms and populations, is becoming increasingly quantitative. In particular, the way that biochemical networks are described is changing from the traditional diagrammatic sketch of possible interactions to a set of mathematical equations that simulate (i.e. model) how the concentration of each molecular species varies with time. A key advantage of mathematical models is that they can be used to predict the response of networks to external perturbations, such as changes in environmental conditions or the addition of pharmacological agents. This reduces the need for large numbers of expensive and time-consuming experiments. However, the more complex a biochemical network model, the greater the range of possible dynamic behaviours it can exhibit. Consequently, extensive computer simulations are necessary for accurate predictions of experimental behaviour to be obtained. For biologically realistic models that can comprise hundreds of molecular species, the number of simulations required far exceeds that which is possible on a practical timescale. It follows that for the predictive power of mathematical models in biology to be fully realised, there is a pressing need for methods that allow their behaviour to be comprehensively explored in a computationally efficient manner. The proposed project will address this need by developing a new modelling methodology based on representing biochemical networks as digital circuits. In this approach, each species is considered to be either "on" (i.e. present) or "off" (i.e. absent), and changes in concentration are simply treated as transitions between these two states. The significant reduction in computational complexity that this affords has the potential to greatly expand the range of networks that can be usefully modelled. As a test case of the approach, digital circuit models will be constructed of the gene network that generates circadian oscillations in an important plant species, Arabidopsis thaliana. Circadian oscillations regulate many processes critical for plant growth and reproduction, such as photosynthesis and seed germination. As part of this work, the computational tractability of the digital circuit models will be exploited to determine how temperature modifies the plant circadian network. In the long term, this may prove important for predicting how future temperature shifts will affect the viability of important crop species, thereby informing strategies for breeding varieties with increased resistance to climate change.
生物系统的研究,从细胞到有机体和种群,正变得越来越定量。特别是,描述生物化学网络的方式正在从传统的可能相互作用的图解草图转变为一组数学方程,模拟(即模型)每种分子物种的浓度如何随时间变化。数学模型的一个关键优势是,它们可以用来预测网络对外部扰动的反应,例如环境条件的变化或药理学试剂的添加。这减少了对大量昂贵且耗时的实验的需求。然而,生化网络模型越复杂,它可能表现出的动态行为范围就越大。因此,为了获得实验行为的准确预测,大量的计算机模拟是必要的。对于可以包含数百种分子物种的生物学现实模型,所需的模拟数量远远超过在实际时间尺度上可能实现的模拟数量。因此,为了充分实现生物学中数学模型的预测能力,迫切需要一种方法,使它们能够以一种计算高效的方式全面探索它们的行为。拟议的项目将通过开发一种基于将生化网络表示为数字电路的新建模方法来解决这一需求。在这种方法中,每个物种被认为是“开”(即存在)或“关”(即不存在),浓度的变化被简单地视为这两种状态之间的过渡。由此带来的计算复杂性的显著降低,有可能极大地扩展可有效建模的网络范围。作为该方法的测试案例,将构建一个重要植物物种拟南芥(Arabidopsis thaliana)中产生昼夜节律振荡的基因网络的数字电路模型。昼夜节律振荡调节着许多对植物生长和繁殖至关重要的过程,如光合作用和种子萌发。作为这项工作的一部分,将利用数字电路模型的计算可追溯性来确定温度如何改变植物的昼夜节律网络。从长远来看,这可能对预测未来温度变化将如何影响重要作物物种的生存能力很重要,从而为培育对气候变化抵抗力增强的品种提供信息。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimisation of an exemplar oculomotor model using multi-objective genetic algorithms executed on a GPU-CPU combination.
- DOI:10.1186/s12918-017-0416-2
- 发表时间:2017-03-24
- 期刊:
- 影响因子:0
- 作者:Avramidis E;Akman OE
- 通讯作者:Akman OE
Additional file 1 of Optimisation of an exemplar oculomotor model using multi-objective genetic algorithms executed on a GPU-CPU combination
使用在 GPU-CPU 组合上执行的多目标遗传算法优化示例性动眼神经模型的附加文件 1
- DOI:10.6084/m9.figshare.c.3726262_d1
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Avramidis E
- 通讯作者:Avramidis E
SODECL An Open-Source Library for Calculating Multiple Orbits of a System of Stochastic Differential Equations in Parallel
SODECL 一个用于并行计算随机微分方程组的多个轨道的开源库
- DOI:10.1145/3385076
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Avramidis E
- 通讯作者:Avramidis E
Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure.
- DOI:10.3389/fpls.2014.00564
- 发表时间:2014
- 期刊:
- 影响因子:5.6
- 作者:Guerriero ML;Akman OE;van Ooijen G
- 通讯作者:van Ooijen G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ozgur Akman其他文献
Ozgur Akman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ozgur Akman', 18)}}的其他基金
Bayesian evidence analysis tools for systems biology
用于系统生物学的贝叶斯证据分析工具
- 批准号:
BB/I023429/1 - 财政年份:2011
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modelling mechanisms of progressive chronic kidney disease in APOL1 high-risk live-donors using BAC-Transgenic mice
使用 BAC 转基因小鼠模拟 APOL1 高危活体供体的进行性慢性肾病的机制
- 批准号:
10726804 - 财政年份:2023
- 资助金额:
$ 12.88万 - 项目类别:
Modelling Bloodstream Infection Patient Outcomes Using Bacterial Biochemical Factors and Machine Learning
使用细菌生化因素和机器学习对血流感染患者的结果进行建模
- 批准号:
486450 - 财政年份:2022
- 资助金额:
$ 12.88万 - 项目类别:
Studentship Programs
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2021
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2019
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling on biochemical reactions and cell dynamics induced by cold atmospheric plasmas
冷大气等离子体引起的生化反应和细胞动力学的数值模拟
- 批准号:
19K03813 - 财政年份:2019
- 资助金额:
$ 12.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2018
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2017
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational modelling of biochemical mechanisms
生化机制的数学和计算模型
- 批准号:
RGPIN-2016-03747 - 财政年份:2016
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
JPND GBA1 mutations in Parkinson disease: clinical and biochemical prodrome, risk profile and pathogenetic modelling for therapeutic intervention.
JPND GBA1 帕金森病突变:临床和生化前驱症状、风险概况和治疗干预的发病机制模型。
- 批准号:
MR/N028651/1 - 财政年份:2016
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant














{{item.name}}会员




