Focusing Plasma Optics: Towards Extreme Laser Intensities

聚焦等离子体光学:迈向极限激光强度

基本信息

  • 批准号:
    EP/L001357/1
  • 负责人:
  • 金额:
    $ 29.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The use of optics to focus light dates back to the ancient Egyptians and has been instrumental over the centuries in contributing to many scientific discoveries and innovations. In recent years the use of optics to focus laser beams has resulted in countless applications, not only in science, but in information technology, medicine, industry, consumer electronics, entertainment and defence. As ever higher focused laser intensities have been achieved, intense laser light has played a revolutionary role, first in atomic and molecular physics and then plasma physics. At the highest intensities achievable today, focused laser light is opening up new frontiers in science via the production of extreme pressures, temperatures and intense electric and magnetic fields, including driving sources of high energy particles and radiation with unique properties.The conventional approach to focusing light, based on the use of solid state optical media, has not fundamentally changed over the centuries, but is rapidly becoming a key limiting factor for the further development of ultra-intense laser science. The main reason for this is that there is a limit to the energy density which solid state optical media can withstand before it is damaged. The traditional way to circumvent this is to increase the size of the focusing optic as the laser energy is increased, so that the overall energy density is below the critical value. However, the optics used on the highest power lasers (such as the Vulcan petawatt laser at the UK's Central Laser Facility) are now more than a meter in diameter and are very expensive, with long manufacture times and limited manoeuvrability due to their volume and weight. Radical new approaches are required to enable the maximum achievable laser intensity to continue to be increased and for the production of compact high intensity laser drivers for application.This proposal aims to explore the feasibility of developing and applying new types of focusing optical systems based on ultrafast plasma processes - focusing plasma optics - to extend the intensity frontier achievable with high power laser pulses. Due to their ability to sustain extremely large amplitude electromagnetic fields, plasma optical components are inherently compact. Energy densities of more than a factor of a hundred higher than conventional solid state optics are easily achievable, which means that plasma optics are more than a factor of ten smaller. Furthermore, the ultrafast evolution of the optical properties of laser-excited plasma enables other properties of the laser pulse to be tailored. For these reasons plasma optical components are likely to become essential elements of future high power laser facilities. The proposed work involves exploring two avenues for achieving plasma focusing - focusing due to reflection from a curved plasma surface and self-induced focusing due to non-linear plasma effects in transparent plasma. Innovative approaches to controlling the properties of the focal spot achieved are introduced. This will enable approximately a factor of 10 to 20 increase in the maximum intensities achievable at present, opening up the exploration of matter under extremely high temperature and pressure conditions. It will also underpin the development of compact laser-driven high energy particle and radiation sources towards application. Thus the focusing plasma optics to be investigated in this project have truly revolutionary potential as next generation optical devices.
使用光学聚焦光线的历史可以追溯到古埃及人,几个世纪以来一直有助于许多科学发现和创新。近年来,使用光学聚焦激光束已经导致了无数的应用,不仅在科学领域,而且在信息技术、医学、工业、消费电子、娱乐和国防领域。随着越来越高的聚焦激光强度的实现,强激光首先在原子和分子物理学,然后在等离子体物理学中发挥了革命性的作用。在当今可达到的最高强度下,聚焦激光通过产生极端压力、温度和强电场和磁场,包括驱动具有独特性质的高能粒子和辐射源,正在开辟科学的新前沿。基于使用固态光学介质的传统聚焦光方法,几个世纪以来没有根本改变,但正迅速成为进一步发展超强激光科学的关键限制因素。其主要原因是固态光学介质在其被损坏之前能够承受的能量密度存在限制。传统的规避方法是随着激光能量的增加而增加聚焦光学器件的尺寸,使得总能量密度低于临界值。然而,用于最高功率激光器(例如英国中央激光设施的Vulcan petawatt激光器)的光学器件现在直径超过一米,并且非常昂贵,由于其体积和重量,制造时间长,机动性有限。为了使最大可实现的激光强度继续增加,并为生产紧凑的高强度激光驱动器的应用,需要激进的新方法。本提案旨在探索开发和应用基于超快等离子体工艺的新型聚焦光学系统的可行性-聚焦等离子体光学-以扩展高功率激光脉冲可实现的强度前沿。由于能够承受极大振幅的电磁场,等离子体光学元件本质上是紧凑的。比传统固态光学器件高出一百倍以上的能量密度是容易实现的,这意味着等离子体光学器件小了十倍以上。此外,激光激发等离子体的光学性质的超快演化使得能够定制激光脉冲的其他性质。基于这些原因,等离子体光学元件很可能成为未来高功率激光装置的基本元件。拟议的工作涉及探索两种途径实现等离子体聚焦-聚焦由于从弯曲的等离子体表面的反射和自诱导聚焦由于在透明等离子体中的非线性等离子体效应。创新的方法来控制的焦斑实现的属性。这将使目前可实现的最大强度增加约10至20倍,从而开辟了在极高温度和压力条件下探索物质的途径。它也将支持小型激光驱动的高能粒子和辐射源的应用发展。因此,在这个项目中研究的聚焦等离子体光学器件作为下一代光学器件具有真正的革命性潜力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Azimuthal asymmetry in collective electron dynamics in relativistically transparent laser-foil interactions
  • DOI:
    10.1088/1367-2630/16/9/093027
  • 发表时间:
    2014-09-23
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gray, R. J.;MacLellan, D. A.;McKenna, P.
  • 通讯作者:
    McKenna, P.
Energy exchange via multi-species streaming in laser-driven ion acceleration
  • DOI:
    10.1088/0741-3335/59/1/014003
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    King, M.;Gray, R. J.;McKenna, P.
  • 通讯作者:
    McKenna, P.
Directed fast electron beams in ultraintense picosecond laser irradiated solid targets
超强皮秒激光照射固体靶中的定向快速电子束
  • DOI:
    10.1063/1.4930074
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Neely, D.;Sheng, Z. M.;Li, Y. T.;McKenna, P.
  • 通讯作者:
    McKenna, P.
Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction
  • DOI:
    10.1038/nphys3613
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Gonzalez-Izquierdo, Bruno;Gray, Ross J.;McKenna, Paul
  • 通讯作者:
    McKenna, Paul
Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators
  • DOI:
    10.1088/0741-3335/58/1/014039
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Brenner, C. M.;Mirfayzi, S. R.;Neely, D.
  • 通讯作者:
    Neely, D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul McKenna其他文献

Hollow Microspheres as Targets for Staged Laser-Driven
空心微球作为分级激光驱动的目标
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Burza;A. Gonoskov;G. Genoud;A. Persson;K. Svensson;M. Quinn;Paul McKenna;M. Marklund
  • 通讯作者:
    M. Marklund
Dynamic control and enhancement of laser-accelerated protons using multiple laser pulses
  • DOI:
    10.1016/j.crhy.2009.03.003
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    David C. Carroll;Dimitri Batani;Roger G. Evans;Yannick Glinec;Christian Homann;Rashida Jafer;Satyabrata Kar;Filip Lindau;Olle Lundh;Keith Markey;David Neely;Frank Nürnberg;Anders Persson;Mark N. Quinn;Alex P.L. Robinson;Markus Roth;Claes-Göran Wahlström;Xiaohui Yuan;Matthew Zepf;Paul McKenna
  • 通讯作者:
    Paul McKenna
Novel scintillator-based x-ray spectrometer for use on high repetition laser plasma interaction experiments.
基于闪烁体的新型 X 射线光谱仪,用于高重复激光等离子体相互作用实验。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    D. Rusby;D. Rusby;C. Armstrong;C. Armstrong;C. Brenner;R. Clarke;Paul McKenna;D. Neely;D. Neely
  • 通讯作者:
    D. Neely
Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils
  • DOI:
    doi:10.1038/s41598-017-17605-6
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Han-Zhen Li;Tong-Pu Yu;Jin-Jin Liu;Yan Yin;Xing-Long Zhu;Remi Capdessus;Francesco Pegoraro;Zheng-Ming Sheng;Paul McKenna;Fu-Qiu Shao
  • 通讯作者:
    Fu-Qiu Shao
Time of Flight based diagnostics for high energy laser driven ion beams
基于飞行时间的高能激光驱动离子束诊断
  • DOI:
    10.1088/1748-0221/12/03/c03086
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Scuderi;G. Milluzzo;A. Alejo;A. Amico;N. Booth;G. Cirrone;Domenico Doria;J. Green;S. Kar;G. Larosa;R. Leanza;D. Margarone;Paul McKenna;H. Padda;G. Petringa;J. Pipek;L. Romagnani;F. Romano;F. Schillaci;M. Borghesi;G. Cuttone;Georg Korn
  • 通讯作者:
    Georg Korn

Paul McKenna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul McKenna', 18)}}的其他基金

The new intensity frontier: exploring quantum electrodynamic plasmas
新的强度前沿:探索量子电动等离子体
  • 批准号:
    EP/V049232/1
  • 财政年份:
    2021
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Nonlinear Optics and Dynamics of Relativistically Transparent Plasmas
非线性光学和相对论透明等离子体动力学
  • 批准号:
    EP/R006202/1
  • 财政年份:
    2017
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Laser-driven radiation beamlines at SCAPA
SCAPA 的激光驱动辐射光束线
  • 批准号:
    EP/P020607/1
  • 财政年份:
    2017
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Laser-Plasma Interactions at the Intensity Frontier: the Transition to the QED-Plasma Regime
强度前沿的激光-等离子体相互作用:向 QED-等离子体体系的过渡
  • 批准号:
    EP/M018091/1
  • 财政年份:
    2015
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Multi-PetaWatt Laser-Plasma Interactions: A New Frontier in Physics
多拍瓦激光-等离子体相互作用:物理学的新前沿
  • 批准号:
    EP/J003832/1
  • 财政年份:
    2012
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Fellowship
SUSSP68 International Summer School in Laser-Plasma Interactions and Applications
SUSSP68 激光等离子体相互作用与应用国际暑期学校
  • 批准号:
    EP/I01781X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Training Grant
Key physics for Inertial Confinement Fusion diagnosed by ion emission
离子发射诊断惯性约束聚变的关键物理
  • 批准号:
    EP/E048668/1
  • 财政年份:
    2007
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant

相似国自然基金

旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of transient state of high-intensity light-generated plasma and its application to X-ray optics
高强度光生等离子体瞬态研究及其在X射线光学中的应用
  • 批准号:
    23H03672
  • 财政年份:
    2023
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Relativistic Plasma Optics with Structured Light
结构光相对论等离子体光学
  • 批准号:
    2206711
  • 财政年份:
    2022
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Relativistic laser-plasma physics and advanced plasma optics
相对论激光等离子体物理学和先进等离子体光学
  • 批准号:
    2189469
  • 财政年份:
    2019
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Studentship
NSF-BSF: Creating and Studying Plasma Structures for Extreme Optics
NSF-BSF:创建和研究极端光学的等离子体结构
  • 批准号:
    1803874
  • 财政年份:
    2018
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Relativistic plasma optics and collective particle dynamics in dense plasma
稠密等离子体中的相对论等离子体光学和集体粒子动力学
  • 批准号:
    1959186
  • 财政年份:
    2017
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Studentship
GOALI: In-Situ Plasma Cleaning of Optics: Building a Fundamental Understanding of the Etch Process in a Complex Plasma Environment
目标:光学器件的原位等离子体清洗:建立对复杂等离子体环境中蚀刻过程的基本了解
  • 批准号:
    1436081
  • 财政年份:
    2014
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Laser plasma interactions, ultrashort pulse laser physics and nonlinear optics research
激光等离子体相互作用、超短脉冲激光物理和非线性光学研究
  • 批准号:
    37488-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Discovery Grants Program - Individual
Laser plasma interactions, ultrashort pulse laser physics and nonlinear optics research
激光等离子体相互作用、超短脉冲激光物理和非线性光学研究
  • 批准号:
    37488-1999
  • 财政年份:
    2001
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Discovery Grants Program - Individual
Laser plasma interactions, ultrashort pulse laser physics and nonlinear optics research
激光等离子体相互作用、超短脉冲激光物理和非线性光学研究
  • 批准号:
    37488-1999
  • 财政年份:
    2000
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Discovery Grants Program - Individual
Laser plasma interactions, ultrashort pulse laser physics and nonlinear optics research
激光等离子体相互作用、超短脉冲激光物理和非线性光学研究
  • 批准号:
    37488-1999
  • 财政年份:
    1999
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了