Biocorrosion: Predicting and responding to new types of microbially-influenced corrosion in the oil and gas industry

生物腐蚀:预测和应对石油和天然气行业中新型微生物影响的腐蚀

基本信息

  • 批准号:
    EP/L001942/1
  • 负责人:
  • 金额:
    $ 32.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Corrosion of metals affects multiple industries and poses major risks to the environment and human safety, and is estimated to cause economic losses in excess of £2.5 trillion worldwide (around 6% of global GDP). Microbiologically-influenced corrosion (MIC) is believed to play a major role in this, but precise estimates are prevented by our limited understanding of MIC-related processes.In the oil and gas sector biocorrosion is usually linked to the problem of "souring" caused by sulfate-reducing bacteria (SRB) that produce corrosive hydrogen sulfide in subsurface reservoirs and topsides facilities. To combat souring, reservoir engineers have begun turning to nitrate injection as a green biotechnology whereby sulfide removal can be catalysed by diverse sulfide-oxidising nitrate-reducing bacteria (soNRB). However, this promising technology is threatened by reports that soNRB could enhance localized corrosion through incomplete oxidation of sulfide to corrosive sulfur intermediates. It is likely that soNRB are corrosive under certain circumstances; end products of soNRB metabolism vary depending prevailing levels of sulfide (i.e., from the SRB-catalyzed reservoir souring) and nitrate (i.e., the engineering "nitrate dose" introduced to combat souring). Furthermore soNRB corrosion will depend on the specific physiological features of the particular strains present, which vary from field to field, but usually include members of the Epsilonproteobacteria - the most frequently detected bacterial phylum in 16S rRNA genomic surveys of medium temperature oil fields. A new era of biological knowledge is dawning with the advent of inexpensive, high throughput nucleic acid sequencing technologies that can now be applied to microbial genomics. New high throughput sequencing platforms are allowing unprecedented levels of interrogation of microbial communities at the DNA (genomic) and RNA (transcriptomic) levels. Engineering biology aims to harness the power of this biological "-omics" revolution by bringing these powerful tools to bear on industrial problems like biocorrosion.This project will combine genomics and transcriptomics with process measurements of soNRB metabolism and real time corrosion monitoring via linear polarization resistance. By measuring all of these variables in experimental oil field microcosms, and scaling-up to pan-industry oil field screening, a predictive understanding of corrosion linked to nitrogen and sulfur biotransformations will emerge, putting new diagnostic genomics assays in the hands of petroleum engineers.The oil industry needs green technologies like nitrate injection. This research will develop new approaches that will safeguard this promising technology by allowing nitrate-associated biocorrosion potential to be assessed in advance. This will enhance nitrate injection's ongoing successful application to be based on informed risk assessments.
金属腐蚀影响多个行业,对环境和人类安全构成重大风险,估计在全球造成超过2.5万亿英镑的经济损失(约占全球GDP的6%)。微生物影响的腐蚀(MIC)被认为在这方面发挥了重要作用,但由于我们对MIC相关过程的了解有限,无法进行精确的估计。在石油和天然气行业,生物腐蚀通常与硫酸盐还原菌(SRB)引起的“酸化”问题有关,SRB在地下储层和上部设施中产生腐蚀性硫化氢。为了防止酸化,油藏工程师已经开始转向硝酸盐注入作为一种绿色生物技术,其中硫化物去除可以由各种硫化物氧化硝酸盐还原菌(soNRB)催化。然而,这种有前途的技术受到威胁的报告,soNRB可以通过不完全氧化的硫化物腐蚀性硫中间体增强局部腐蚀。在某些情况下,soNRB可能具有腐蚀性; soNRB代谢的终产物根据硫化物的普遍水平而变化(即,来自SRB催化的储层酸化)和硝酸盐(即,引入工程“硝酸盐剂量”以对抗酸化)。此外,soNRB腐蚀将取决于存在的特定菌株的特定生理特征,其因油田而异,但通常包括ε变形菌门的成员-在中温油田的16 S rRNA基因组调查中最常检测到的细菌门。随着廉价、高通量的核酸测序技术的出现,生物学知识的新时代正在到来,这些技术现在可以应用于微生物基因组学。新的高通量测序平台允许在DNA(基因组)和RNA(转录组)水平上对微生物群落进行前所未有的询问。工程生物学的目标是利用这一生物“组学”革命的力量,使这些强大的工具来承担工业问题,如生物腐蚀。该项目将联合收割机基因组学和转录组学与过程测量的soNRB代谢和真实的时间腐蚀监测通过线性极化电阻。通过在实验性油田微观环境中测量所有这些变量,并扩大到泛行业油田筛选,将出现对与氮和硫生物转化相关的腐蚀的预测性理解,将新的诊断基因组学分析交给石油工程师。石油行业需要硝酸盐注入等绿色技术。这项研究将开发新的方法,通过提前评估硝酸盐相关的生物腐蚀潜力来保护这项有前途的技术。这将促进硝酸盐注射的持续成功应用,以建立在知情的风险评估基础上。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metagenomic Investigation of a Low Diversity, High Salinity Offshore Oil Reservoir.
  • DOI:
    10.3390/microorganisms9112266
  • 发表时间:
    2021-10-31
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Scheffer G;Hubert CRJ;Enning DR;Lahme S;Mand J;de Rezende JR
  • 通讯作者:
    de Rezende JR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casey Hubert其他文献

Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene
  • DOI:
    10.1007/s10531-003-0471-4
  • 发表时间:
    2005-02-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Casey Hubert;Yin Shen;Gerrit Voordouw
  • 通讯作者:
    Gerrit Voordouw

Casey Hubert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Casey Hubert', 18)}}的其他基金

DEEPBIOENGINEERING
深层生物工程
  • 批准号:
    EP/J002259/1
  • 财政年份:
    2012
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Fellowship

相似海外基金

Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
  • 批准号:
    2305659
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Fellowship Award
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
  • 批准号:
    10106145
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
  • 批准号:
    24K09176
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
  • 批准号:
    MR/X019616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了